
111SISTEMAS
& TELEMÁTICAEfficient Mesh Generation Using Subdivision Surfaces

Fecha de recepción: 4-01-2008 Fecha de aceptación: 8-08-2008 Fecha de selección: 17-10-2008

Efficient Mesh Generation Using
Subdivision Surfaces

Andrés Adolfo Navarro Newball
anavarro@puj.edu.co

Geoff Wyvill
geoff@otago.ac.nz

Brendan McCane
mccane@cs.otago.ac.nz

RESUMEN
Las mallas poligonales y en par-

ticular las mallas triangulares son

la estructura más utilizada para

modelado en 3D. La estructura de

datos ‘bordes directos’ es la forma

más eficiente de representarlas y la
subdivisión de superficies un modo
adecuado de generarlas. Del estudio

de subdivisión de superficies escogi-
mos el método ‘subdivisión √3’ para
la generación de mallas. Nuestro

principal reto fue tomar ventaja de

la estructura de datos ‘bordes direc-

tos’ encontrando fórmulas para una

implementación eficiente. Decidimos
utilizar archivos en el formato 3DS y

convertirlos a ‘bordes directos’ para

uso en nuestra aplicación. Probamos

nuestro algoritmo con mallas de

topología arbitraria y calculamos su

eficiencia. Nuestra implementación
será utilizada para la creación de la

cabeza de un perro virtual.

PALABRAS CLAVE
Malla, Computación gráfica, Subdi-
visión de superficies

ABSTRACT
Polygonal meshes and particularly

triangular meshes are the most used

structure for 3D modelling. The ‘di-

rect edges’ data structure is the most

efficient way to represent them and
subdivision surfaces is an appropri-

112 SISTEMAS
& TELEMÁTICA Vol. 6 No. 12 • Julio - Diciembre de 2008

ate method to generate them. From

a review of subdivision surfaces we

chose the ‘√3 subdivision’ method for
mesh generation. Our main challenge

was to take advantage of the direct

edges data structure and to find the
right formulas for an efficient imple-

mentation. We decided to use files in
the 3DS file format and convert them
to the direct edges data structures

for use in our application. We tested

our algorithm with arbitrary mesh

topologies and calculated efficiency.
Our implementation will be used in

the creation of a virtual dog head.

KEY WORDS
Mesh, Computer graphics, Subdivi-

sion surfaces

Clasificación Colciencias: Tipo 1

113SISTEMAS
& TELEMÁTICA

1. INTRODUCTION
We needed an adequate method to

represent the surface of a 3D virtual

dog skull that will be part of a bigger

project [1]. Our implementation of a

parametric triangular mesh genera-

tion algorithm helped us to validate

the technique and to confirm our

choice.

A surface separates the interior from

the exterior by a boundary. In order

to generate a mathematical surface

we need to establish continuity and

neighbourhood relationships between

samples. Complex shapes require

piecewise representations and are

split in sub-regions each one of which

is defined by an individual function.
These representations are just ap-

proximations of the surface and it

can be demonstrated from the Tay-

lor theorem that the approximation

error in an interval h of the surface

by a polynomial of degree p is O(h
p+1). In order to decrease the error

one can increase the degree of the

polynomial or use more segments or

sub-regions. Operations required by

surfaces include evaluation, query

and modification. Evaluation refers
to the sampling of the surface and its

attributes. Query aims to identify if a
given point p R3 is inside or outside

the solid bounded by S. Modification
refers to geometry changes such

as surface deformations or topol-

ogy changes. There are two major

classes of representation. Paramet-

ric representations are defined by
a vector valued parameterization

function (1). Implicit or volumetric

representations are defined by a zero
set of a scalar valued function (2) [2].

Parametric representations are bet-

ter for evaluation and modification,

implicit representations are better

for query [2].

f: Ω S, where S is a surface, Ω R2

and S = f (Ω) R3. (1)

F: R3 R where S = { x R3 | F (x) =

0}. (2)

Polygonal meshes approximate a

surface by a mesh of planar polygonal

facets. They are low complexity repre-

sentations more efficient for render-

ing. In particular, triangular meshes

remain the most used structure for

3D modelling. In [3] they argue that

quadrilaterals are better than tri-

angles capturing the symmetries of

objects and that they are compatible

with bi cubic patches used in com-

mercial software. However, in [2]

they state that triangles have become

increasingly popular because they

allow more flexible and efficient pro-

cessing and avoid conversion errors.

We decided to follow the approach

from [2] and use triangular meshes.

Additionally, we found that subdivi-

sion surfaces are an appropriate way

to generate and create parametric

polygonal meshes. They reduce the

representation of a complex surface

to a simpler control mesh that is able

to generate refined surfaces.

2. METHODOLOGY
In order to find an appropriate repre-

sentation, we reviewed literature on

3D modelling. From this, we identi-

fied the advantages of using trian-

gular meshes. Also, we studied and

created an algorithm to convert from

the 3DS file format to the direct edges
data structure which we found to be

the most efficient one. Then, from
the review of subdivision surfaces we

chose the √3 subdivision method for
generating the mesh. At this stage,

Efficient Mesh Generation Using Subdivision Surfaces

114 SISTEMAS
& TELEMÁTICA Vol. 6 No. 12 • Julio - Diciembre de 2008

we had to find the right formulas for
counting elements in the mesh (i.e.

vertices and faces) in order to create

an efficient implementation. We cre-

ated and downloaded several input

meshes in the 3DS format, converted

them and tested our algorithm. The

input meshes included closed regu-

lar surfaces, planes with boundar-

ies, surfaces with non subdividable

polygons and the arbitrary mesh of

a spaceship. We calculated memory

usage, performance and element

growth. The implementation will be

further used in the creation of the

virtual dog head.

3. TRIANGULAR MESHES
Frequently, triangular meshes are

considered as a coarse collection

without a mathematical representa-

tion. Problems arising from a coarse

mesh include little connectivity infor-

mation (triangle soups), inconsistent

normal orientations, gaps, intersect-

ing patches and degenerate elements

such as triangles with zero area.

However, an acquired coarse mesh

can be used as an input to produce

an enhanced one (i.e. using subdivi-

sion surfaces) [2, 4, 5]. A parametric

triangular mesh M can be described

as M (P, K), where P = Set of N posi-

tions p
i
(x

i,
y

i,
z

i
) R3 and K contains

the description of the topology. Tri-

angular meshes are the most simple

and flexible continuous surface repre-

sentation where only C0 continuity is

required [2]. Here, complex surfaces

are formed by triangular pieces with

a linear parameterisation function

with an approximation error of O

(h2), where h is the maximum edge

length. The valence of a vertex is the

number of vertices in its neighbour-

hood. In semi-regular triangular

meshes, most of the vertices have a

valence of 6. Vertices with a differ-

ent valence are called extraordinary

vertices. “An important topological

quality of a surface is whether or not

it is two-manifold, which is the case

if for each point the surface is locally

homeomorphic to a disk (or a half-

disk at boundaries). A triangle mesh

is two-manifold, if it does neither

contain non-manifold edges or non-

manifold vertices, nor self-intersec-

tions. A non-manifold edge has more

than two incident triangles and a

non-manifold vertex is generated by

pinching two surface sheets together

at that vertex, such that the vertex

is incident to two fans of triangles”,

[2, p.19].

3.1. Data structures for triangu-

lar meshes.

Efficient data structures allow local
and global traversal of a mesh. Opera-

tions include [2]:

• Access and enumeration of indi-

vidual vertices, edges, faces.

• Oriented traversal of edges of a

face (next edge in a face).

• Access to at least one face at-

tached to a given vertex.

The direct edges data structure is the

most efficient to deal with triangular
meshes [2]. It is based on indices as

references to each element where

indexing follows rules that implic-

itly encode connectivity information

(Table 1). Here, each edge is repre-

sented into two opposing halfedges

consistently oriented counter clock-

wise (Figure 2). This data structure is

only useful for triangular meshes and

provides no explicit representation of

edges (though it can be specialised to

115SISTEMAS
& TELEMÁTICA

other polygons). It groups the three

halfedges belonging to a common

triangle. Additional information is

explicitly stored in arrays. For in-

stance, for each vertex, the index of

an outgoing halfedge is stored and;
for each halfedge, the index of its

opposite half edge and the index of

the vertex the halfedge points to are

stored. Boundaries are managed with
special negative indices that indicate

that the edge vertex is invalid.

4. SUBDIVISION SURFACES
Subdivision surfaces help in the

creation and refinement of proper
3D mesh models. They are capable

of representing an arbitrary geo-

metrically unrestricted topology.

They produce an efficient hierarchi-
cal structure and an object can be

modelled as a low resolution control

mesh from which we can generate

new meshes by refining the previous
one. Some subdivision methods such

as Catmull and Clark [4] work on

quadrilaterals or extend subdivision

to a n-sided problem and are not re-

stricted to triangles such as Doo and

Sabin [5, 6]. Others such as butterfly
[4], √3 Subdivision [6] and Loop [8]
are specialised to triangles. [8] Has

been widely used [9, 10, 11].

One can define: M0 (P0, K0) as the

original coarse mesh (which can be

used as the control mesh) and Mj (Pj,

Kj) as the j times subdivided mesh.

Indices and operation Description / calculation

f Index of a face

Get halfedge (f, i) from face number 3f + i, with i {0, 1, 2} (3)

h Index of a halfedge

Adjacent face from halfedge (h) h/3 (4)

Next halfedge (h+1) mod 3. (5)

Here, Pj are the mesh points at level j

of subdivision and Kj contains the de-

scription of the topology at level j. Mj,

with j is the approximation of

a B spline limit surface. A subdivision
scheme S takes the vertices from level

j to level j+1 so that S(K j) = K j + 1. A

subdivision matrix or stencil SM maps

a mesh Mj to a topologically equiva-

lent refined mesh Mj+1. Eigenvalues

or characteristic roots are a special

set of scalars associated with linear

systems of equations such as matrix

equations. In a subdivision scheme S,

the eigenvalues of the subdivision ma-

trix are important to determine if the

method converges to a limit smooth

surface. For instance, all subdivision

schemes must guarantee adequate

design of the SM stencil so that eigen-

values have a certain distribution and

a continuous surface approximating

the limit surface can be generated [7,

9]. In SM, every row is a rule to com-

pute the position of a new vertex and

every column tells how one old vertex

contributes to the vertex positions in

the refined mesh [2]. In stationary
methods the refinement functions are
the same for every subdivision level.

However, different rules are applied

to define sharp features, creases or
to deal with extraordinary vertices

[9]. Also, stop conditions can be used

for adaptive refinement [7]. In some
methods old vertices are repositioned

for smoothing [7].

Table 1. The direct edges data structure

Efficient Mesh Generation Using Subdivision Surfaces

116 SISTEMAS
& TELEMÁTICA Vol. 6 No. 12 • Julio - Diciembre de 2008

4.1. Subdivision techniques for
triangular meshes

Butterfly subdivision [4, 9] converts
each face into four using edge verti-

ces. Artefacts and discontinuities are

produced in vertices with valence dif-

ferent from 6. For example, it never

produces smooth surfaces on extraor-

dinary vertices and incorrect smooth

regions can appear near high valence

vertices due to eigenclustering (more

than one eigenvalue per matrix). It

is based on dyadic split (divide every

edge in two) and does not produce C2

continuity. The modified butterfly
deals with artefacts of the original

butterfly [4]. It approximates the

behaviour of a C2 surface based on

dyadic split. Here, eigenclustering

is avoided. Loop subdivision [9] is

one of the simplest C1 subdivision

schemes. Here, stencils are smaller

and convergence rate is better than

in modified butterfly. It is based on
dyadic split and is not C2 at extraor-

dinary vertices. The scheme does not

look smooth for large valences, due to

eigenclustering. The modified Loop
[9, 12] increases the stencil in a mini-

mal way around a vertex and avoids

eigenclustering. Here, vertices have

better structure at extraordinary

points. However, ripples appear. The

ternary Loop subdivision [13] uses

three stencils. It achieves bounded

curvature, manifold support, and

convex Hull. It is C2 continuous.

However, No rules have been defined
to deal with boundaries or with sharp

features.

√3 Subdivision [7] is a stationary
subdivision scheme with slower topo-

logical refinement with trisection of
every original edge (every two steps).

It inserts a new vertex at the centre of

every face (Figure 1a and 1b). Then, it

creates the new faces (Figure 1c) and

flips every original edge (Figure 1d).
To do that, it uses simple stencils of

minimum size and maximum symme-

try. Here, a new vertex is calculated

as the average of the three old ones

(a new vertex only affects one face).

Then, the old ones are relaxed using

(6). The scheme uses a generation

index to perform adaptive refinement
and allows sharp feature lines. It is

C2 continuous except at extraordi-

nary points. All new vertices have

valence 6 and the valence of the old

ones is not changed. We chose this

method because it produces more lev-

els of subdivision with lower number

of triangles and simpler rules.

() ∑
_

=
+

_
=

1

0

1
1)(

n

i inn p
n

ppS (6)

Where

S(p) = relaxation stencil for vertex

p.

9

2
cos24

_

=
n

n

n = valence

Figure 1. a) Original mesh. b) Middle point. c) Split triangles. d) Flipping
edges. [adapted from 7, p.104]

117SISTEMAS
& TELEMÁTICA

5. IMPLEMENTATION

5.1. Converting from 3DS to
Direct Edges

Using a 3DS format loader [14] we

created an algorithm that converts a

3DS mesh into a Direct Edges data

structure. In our algorithm, only the

vertex list and faces descriptions

were processed preventing unneces-

sary duplication. Our application

opens the 3DS file. Next, it reads
the vertices and adds them to a ver-

tex list. Then, it reads the faces and

adds them to a face list assigning

the proper vertex indices. It creates

the halfedges list from the faces list.

For each one it assigns the vertex it

points to and, for each vertex it as-

signs one outgoing halfedge. Next, for

each halfedge it finds and assigns its
opposite. Finally, it detects boundary

vertices and saves the data.

5.2. √3 subdivison surfaces
using the Direct Edges Data

Structure

In our implementation a main subdi-

vision cycle calculates the subdivision

surface until it reaches the number

of levels defined by the user. At each
level, the algorithm performs three

tasks. First, it calculates the new

vertices in each face (Table 2). Here,

if it is a non boundary subdividable

face or a boundary face in even level

(Figure 2c), the mid point is obtained

and three faces are created. If the

face is not subdividable then one face

is recreated (Figure 2a). If the face

is a boundary face and the level of

subdivision is odd, two new vertices

are calculated and three faces are

created (Figure 2d). After the faces

have been subdivided a mesh similar

to the shown in Figure 1c is produced.

The next task (Table 2) is to flip the
edges in each face of the new sub-

divided mesh. Here, the edges are

flipped only if the face and its mate
are sub dividable and non boundary

or, when the face belongs to a bound-

ary at an odd level of subdivision.

After the edges have been flipped a
mesh similar to the shown in Figure

1d is produced. The final task is to
re- position the three old vertices in

each face. Calculations are done tak-

ing care of avoiding boundary verti-

ces, because these can cause visible

discontinuities. Here, the calculation

of the vertex’s neighbourhood is re-

quired (Table 2).

5.2.1. Memory allocation

Every time the calculations for a new

level of subdivision start, the memory

is allocated according to the new

needs. The result of the last subdivi-

sion step is stored in a file that is used
as a starting point for the next level.

The use of a file eliminated the need
of using heavy intermediate memory

objects. At level 0, memory for the

control mesh is allocated according

to the number of vertices, faces and

halfedges which were defined as in
Table 3. Memory for subsequent

levels of subdivisions is calculated

according to (7) (8) and (9).

NV = OVN + NSF + 2NBF (7)

NF = (ONF – NNF) 3 + NNF (8)

NHE = ((ONF – NNF).3.3) + 3NNF

(9)

NV = Number of vertices

NF = Number of faces

NHE = Number of halfedges. For

each face 3 halfedges

OVN = Old number of vertices

Efficient Mesh Generation Using Subdivision Surfaces

118 SISTEMAS
& TELEMÁTICA Vol. 6 No. 12 • Julio - Diciembre de 2008

Step1: finding new vertices Step2: flipping edges

For AllFaces
 If FaceNotAtBoundary
 If Face Subdividable
 ComputeMidPoint and Split
 Else
 RecreateFace
 Else
 If FaceAtBoundary
 If EvenLevel
 If Subdividable
 ComputeMidPoint and Split
 Else
 RecreateFace
 Else
 If Subdividable
 CreateFacesAtBoundary
 Else
 RecreateFace

For AllFaces
 If FaceNotAtBoundary
 If Face Subdividable
 SwapFace
 Else
 RecreateFace
 Else
 If OddLevel
 If Subdividable
 SwapAtBoundary

Step 3: old vertices re positioning Neighbourhood calculation

For AllFaces
 If VertexNotAtBoundary
 CalculateNeighbourhod
 RePosition Accoridng to (3)

Find OutgoingHalfedge
 AverageFirstVertex
 Increment Neighbourhood size
 Repeat
 Get OppositeHalfEdge
 Get NextHalfedgeInRing adding 1
 Add vertex to average
 Increment Neighbourhood size
 Until RingComplete or Boundary or
 Distortion

Table 2. Steps in subdivision and neighbourhood calculation

Vertex

(160 bits)

Float x, y, z

Int Outgoing

Int Boundary

3D position.

For each vertex, store index of outgoing halfedge.

Indicate if it is a boundary vertex.

Polygon

(224 bits)

Int a, b, c, mate

Int subdividable

Int iBoundFace:

Int iNonSubFaces

For each polygon store vertex indices, mate.

Equals 1 when subdividable.

Number of boundary faces before this.

Number of non subdividable face before this.

Halfedge

(64 bits)

Int oppositeHalfedge Int

toVertex

For each halfedge store:

Index of opposite halfedge.

Index of vertex the halfedge points to.

Table 3. Halfedge elements implementation

119SISTEMAS
& TELEMÁTICA

NSF = Number of sub dividable faces.

One new vertex for each face.

NBF = Number of boundary faces.
Two new vertices for each face.

ONF = Old number of faces (each sub

dividable one produce 3 new ones)

NNF = Number of non sub dividable

faces.

5.2.2. Assigning halfedges and

counting

Our main challenge was to keep track

of the halfedges after each task. As-

signing proper halfedges numbers is

very important before the flipping
operation, otherwise the mesh will

be corrupted. The naive solution is to

create costly loops to find and assign
halfedge numbers. However, count-

ing helps to use the direct edges data

structure efficiently.

Figure 2. a) Non subdivided face. b) New vertices at boundary. c) Subdi-
viding a regular face. d) Subdividing a boundary face in odd step.

The first and easiest thing is to cal-
culate the interior halfedges using

formula (3). For example, a face F has

three interior halfedges. These are

assigned counter clock wise starting

from vertex a. For instance:

• Halfedge 0 goes from a to b.

• Halfedge 1 goes from b to c.

• Halfedge 2 goes from c to a.

Figure 2a shows the halfedge num-

bers for face F = 0. In the regular case

(Figure 2c) an old face produces 9 new

halfedges. Assuming face [a, b, n] as

face 0, [b, c, n] as face 1 and [c, a, n] as

face 2, the halfedge values are easily

obtained with (3). At boundaries (Fig-

ure 2d) faces are created differently.

Here, we assumed the leftmost face

as face number 0, the middle one as

face 1 and the rightmost as face 2.

Efficient Mesh Generation Using Subdivision Surfaces

120 SISTEMAS
& TELEMÁTICA Vol. 6 No. 12 • Julio - Diciembre de 2008

Let G be our face. Finding the values

for the opposite halfedges for face G

requires proper counting. Let us sup-

pose that face F (before subdivision)

is the neighbour face that contains

the halfedge which is opposite to G

(O
0
, O

1,
O

2
 in Figure 2). The 0 halfedge

of face F can be obtained from (10).

HE = ((F – N) 9) + 3N (10)

Where

HE = Halfedge number.

F = Current face number.

N = Number of non sub dividable

faces before F.

However, we need to identify which

halfedge from F we are next to. In or-

der to do this, we need to know if the

opposite (O) halfedge (O
0
, O

1
 or

O

2
) is

the number 0, 1 or 2 in F. Here:

• If O = 3F then the O is F’s number

0.

• If O = 3F+1 then the O is F’s num-

ber 1.

• If O = 3F+2 then the O is F’s num-

ber 2.

Once we have the O number from face

F, as new halfedges will be created,

we need to identify what will be the

halfedge number after F has been

subdivided. There are several cases:

• F is a sub dividable face or F is

a boundary face in even level of

subdivision. If G is opposite to F’s

0 halfedge, then O = HE. If G is

opposite to F’s 1 halfedge, then O

=HE+3. If G is opposite to F’s 2

halfedge, then O = HE+6.

• F is a non sub dividable face. If G

is opposite to F’s 0 halfedge, then

O = HE. If G is opposite to F’s 1

halfedge, then O = HE+1. If G is

opposite to F’s 2 halfedge, then O

= HE+2.

• F is a sub dividable boundary face

in odd level of subdivision. Here,

the new three triangles are ar-

ranged differently from the regu-

lar case (figures 2c and 2d), this
affects the way we count. Here,

if G is opposite to F’s 0 halfedge,

then O = HE. If G is opposite to

F’s 1 halfedge, then O = HE+6.

If G is opposite to F’s 2 halfedge,

then O = HE+2.

On the other hand, calculating the

new interior opposite halfedges (1, 5,

4, 8, 7, 2 in Figure 2c and 1, 5, 4, 8 in

Figure 2d) is straightforward. Here,

halfedge 1 of one new face is next to

halfedge 2 of the other one (11). Op-

posite halfedges to the 0 halfedge of

new boundary faces are assigned -1

(non existent).

OppositeOf (3F+1) = (3(F+1))+2, with

F = face number (11)

5.2.3. Splitting

A new vertex n in a regular face

(Figure 2c) is obtained from (12).

At boundaries (figures 2b and 2d),
every odd subdivision level two new

vertices are calculated in the edge of

the boundary and the centre of the

boundary triangle is displaced as in

(13), (14) and (15)

n = 1/3 (a + b + c) (12)

d = 1/27(16a+f+10b) (13)

e =1/27(10a+f+16b) (14)

f = 1/27(4a+19f+4b) (15)

Sub triangles from [a, b, c] are built

counter clock wise as [a, b, n], [b, c, n]

121SISTEMAS
& TELEMÁTICA

and [c, a, n] (Figure 2c), leaving their

0 halfedge to coincide with an old edge

in the subdivided face. Sub triangles

at a boundary face in an odd level of

subdivision are arranged from left

to right (Figure 2d). Here [a, b, c] is

refined with [a, n, c], [n, m, c] and [m,
b, c]. Note that the halfedge 0 of each

new face is made to face the border.

5.2.4. Swapping faces

In Figure 3a, face F [a, b, c] is going

to be swapped with face M [b, a, d].

Let us assume that F is a regular face.

Swapping cannot be achieved if:

Table 4. Swapping faces F and M

F [d, c, a] halfedges M [c, d, b] halfedges

0: F3

1: (F3) + 1

2: (F3) +2

Opposite: M3

Opposite: HE1

Opposite: HE3

0: M3

1: (M3) + 1

2: (M3) +2

Opposite: F3

Opposite: HE4

Opposite: HE2

• M has already been swapped in

the current subdivision level.

• M is a boundary face.

• M is a non sub dividable face.

If swapping is possible the old op-

posite halfedge values HE1, HE2,

HE3 and HE4 have to be stored and

reassigned in order to keep consis-

tency and connectivity. Then, the two

faces are swapped as shown with the

dotted line and the new 0 halfedge is

assigned along this line for each face

in this new arrangement. The new

faces are described in Table 4.

Figure 3. a) Flipping edges. b) Neighbourhood.

HE1 HE2

HE3 HE4

M

M

F

c

a

(a)

d

b

9

8
7 6

4

3

5

c

e

b

d

a

1
2

0

10

11

F

(b)

A boundary face in an odd level is

swapped only if the same conditions

for regular swapping are met (except

that M could have been swapped);
only the leftmost and rightmost faces

(Figure 2d) are candidates for swap-

ping, the middle face remains the

same. Here (Figure 2b), flipping re-

quires the rearrangement of triangles

[a, f, O
1
] and [a, d, f] to triangles [O

1
,

d, f] and [d, O
1
, a] and triangles [f, b

O
2
] to [e, b, f] to triangles [e, O

2
, f] and

[O
2
, e, b] producing a boundary strip

of five triangles.

Efficient Mesh Generation Using Subdivision Surfaces

122 SISTEMAS
& TELEMÁTICA Vol. 6 No. 12 • Julio - Diciembre de 2008

5.2.5. Detecting boundaries and

subdividable faces

A boundary face is detected by

checking if it contains at least one -1

valued opposite halfedge. Boundary
vertices are detected as a last step

in the conversion from the 3DS to

the direct edges format. Here, a flag
is assigned to each boundary vertex.

In Figure 2a:

• a is a boundary vertex if the op-

posite of halfdegde 0 or 2 is next

to a boundary face.

• b is a boundary vertex if the op-

posite of halfdegde 0 or 1 is next

to a boundary face.

• c is a boundary vertex if the op-

posite of halfdegde 1 or 2 is next

to a boundary face.

Not keeping proper track of the

boundary vertices may produce dis-

tortion. The detection of a sub divid-

able face is yet to be implemented.

Under certain flatness criteria (based
on differential geometry) a face could

be tagged as non sub dividable during

the conversion process.

5.2.6. Calculating a neighbour-

hood

This calculation returns the number

of neighbours of a vertex and their

average coordinate value. In Figure

3b vertex c has 4 neighbours (a, b, e,

d) and their average is obtained with

(16). Our algorithm deals with closed

manifolds, boundaries and distorted

polygons. Let us assume that the first
detected outgoing halfedge in Figure

3b is HE 2. First, we add vertex a to

the average and increment the neigh-

bourhood. Then, we find the opposite
halfedge (in this case 10). If it is the 2

halfedge of the next face we subtract

2 in order to find the halfedge which
points to the next vertex. If it is the 0

or 1 halfedge of the next face we add

1 in order to find the halfedge which
points to the next vertex. Then, we

add this vertex to the average and

increment the number of neighbours.

The algorithm continues until the

halfedge pointing to the next vertex

is equal to the first halfedge or until
an edge or a distortion is detected

(Table 2).

Average of c-neighbours = (a + b + e

+ d) / 4 (16)

6. RESULTS
Our direct edges implementation

uses fewer elements. While in the

3DS format a cube contains 26* verti-

ces, in the direct edges format it only

contains 8. While in the 3DS format

a spaceship contains 649* vertices,

in the direct edges format it only

contains 260. The number of faces

remained the same in both cases. The

size of one vertex, one polygon and

one halfedge (Table 3) can be easily

calculated as a float and an integer
occupy 32 bits each. According to

(7), (8) and (9) for a mesh object in

a subdivision step the size in bytes

would be (17). The intermediate text

file generated in each subdivision will
vary in size, but tests produced files
with sizes lower than 4 kilo bytes.

The complexity O(n) for the main

 As generated and verified using Discreet’s 3D Studio MaxAs generated and verified using Discreet’s 3D Studio Max

123SISTEMAS
& TELEMÁTICA

subdivision routine can be approxi-

mated as (18), because all values can

be approximated in terms of F with

the Euler formulas [2]. It accounts

time for the three main procedures

(splitting, flipping and re positioning)
and the time to create and read from

the intermediate file. The number of
elements growth is shown in Figure

4. Here, it can be seen that the num-

ber of regular faces and the number

vertices have an exponential growth,

while the number of boundary faces

growth is much slower and behaves

linearly. The number of non sub divid-

able faces remains constant. Meshes

produced are shown in Figure 5.

Size = (160NV + 224NF + 64NHE) /

8 (17)

O(n) = O (L F I) (18)

Figure 4. Element increase in √3 subdivision.

Figure 5. a) Mesh with boundaries and 2 non sub dividable faces (7 levels).
b) 2D mesh with boundaries (2 levels). c) Limit and control surface of a
cube (4 Levels). d) Spaceship (2 levels). e) Big plane (2 levels)

Level

Vertices

Faces

Boundaryfaces

Non subdividable

Efficient Mesh Generation Using Subdivision Surfaces

124 SISTEMAS
& TELEMÁTICA Vol. 6 No. 12 • Julio - Diciembre de 2008

Where

L = Number of subdivision levels

F = Number of faces

I = Neighbourhood size (insignificant
in big meshes)

7. DISCUSSION
Parametric triangular meshes allow

efficient validation (used for display)
and modification (especially when
defined with subdivision surfaces).
We decided to use them, because due

to their popularity, many methods

for processing them have been de-

veloped. Coarse meshes may bring

distorted triangles and edges (i.e.

“nonmanifold meshes are problematic

for most algorithms, since around

non-manifold configurations there

exist no well-defined local geode-

sic neighbourhood”), [2, p.19]. We

manage them with the definition of
proper stop conditions. Our algorithm

can be applied to an arbitrary mesh

(Figure 5). The understanding of the

direct edges data structure allowed

efficient implementation and reduced
the number of elements used in the

original 3DS format. Counting was

essential in memory allocation and

in keeping track of the halfedges for

each new face. It allowed the effec-

tive implementation of the basic op-

erations required by the subdivision

algorithm.

Subdivision surfaces have a major

advantage, which is providing a

control mesh (which will facilitate

deformation) and a refined triangular
mesh (which will ease display). Their

use will bring C2 continuity to most

regions of the mesh, producing a more

natural look [2]. The benefits of the √3
subdivision brought to our attention a

better and newer subdivision scheme

which is supported by less complex

stencils and has a simpler way to

deal with sharp features, boundaries

and with adaptive refinement. In √3
subdivision growth is slower than in

other subdivision techniques. The

inclusion of non sub dividable faces

lowers the number of new generated

faces. Apart from boundary faces, the

growth is still exponential (Figure 3).

However, the √3 subdivision produces
fewer triangles than other methods

providing similar quality and the

mesh produced is visually appealing

with a few levels of subdivision.

One simple way to define edges or
sharp features is to pre assign -1

valued opposite halfedges to the re-

gion of interest. We want to propose

preserving flat regions with smaller
number of triangles. For instance, dif-

ferently from the original algorithm

we want to avoid subdividing well

defined flat regions during adap-

tive refinement. To achieve this, our
algorithm still requires a flatness
function able to predetermine what

faces are non sub dividable.

Londra [1] will be a virtual dog

capable of displaying facial expres-

sions. She will use a skull model

implemented with a polygonal mesh

generation / representation technique

suitable for deformation, parameter-

ization and animation, because the

skull shape will change according to

conformational anatomical param-

eters. From our implementation and

the tests made, we have found that √3
subdivision surfaces are an appropri-

ate modelling technique for the skull.

Additionally, our skull will include

non penetration features, requiring

the use of an alternate implicit model

125SISTEMAS
& TELEMÁTICA

(implicit models are better for query

operations). Here, the idea will be to

create new dog breed heads from new

skull shapes obtained altering the

model through its control mesh that

will produce the new refined meshes.
To account for head type transitions,

Londra will not require topological

changes, only geometric ones. In con-

sequence, the complexities involved

in the former will be avoided.

8. BIBLIOGRAPHIC
[1] Navarro AA, Wyvill G, McCane

B. Towards the creation of Lon-

dra: A virtual expressive anima-

ted dog. Accepted for NZCSRSC,

2008.

[2] Botsch M., Pauly M., Kobbelt
L., Alliez P., Lévy B. Geometric
Modeling Based on Polygonal
Meshes. SIGRAPH Courses,

2007.

[3] DeRose T, Kass M, Truong T.

Subdivision Surfaces in Cha-

racter Animation. Annual con-

ference on Computer graphics

and interactive techniques Pro-

ceedings, pp. 85 – 94, 1998.

[4] Watt A, Policarpo F. 3D Ga-

mes: Real time rendering and

software technology. Addison

– Wesley, London, 2001.

[5] Doo D. A subdivision algorithm

for smoothing down irregularly

shaped polyhedrons. Interactive

Techniques in Computer Aided

Design Proceedings, pp. 157 -

165, 1978.

[6] Doo D, Sabin M. Behavior of
recursive division surfaces near

extraordinary points, Compu-

ter-Aided Design, 10(6)356-360

(1978)

[7] Kobbelt L. √3 Subdivision. An-

nual conference on Computer

graphics and interactive techni-

ques Proceedings, pp. 103 – 112,

2000.

[8] C. T. Loop. Smooth Subdivision

Surfaces Based on Triangles.
M.S. Thesis, University of Utah,

1987.

[9] Zorin, Stationary Subdivision

and Multiresolution surface

representations. PhD Thesis.

California Institute of Techno-

logy, 1998.

[10] Lee A, Sweldens W, Schröder P,

Cowsar L, Dobkin D. Multire-

solution Adaptive Parameteri-

zation of Surfaces. Annual con-

ference on Computer graphics

and interactive techniques Pro-

ceedings, pp. 343 – 350,1999

[11] Lee A, Moreton H, Hoppe H.

Displaced subdivision surfaces.

Annual conference on Computer

graphics and interactive techni-

ques Proceedings, pp. 85 – 94,

2000.

[12] Stam J. Evaluation of Loop Sub-

division Surfaces, SIGGRAPH

Computer Graphics Procee-

dings, 1998.

[13] Loop C. Smooth Ternary Sub-

division. Curve and Surface

Fitting: Saint-Malo 2002.

[14] Vitulli D. The 3DS file structure.
http://www.spacesimulator.net,

2005.

CURRÍCULUM
Andrés A. Navarro Newball. Com-

puter Scientist from the Universi-

dad Javeriana. MSc in Computer
Graphics from the University of

Hull. Networks Specialist from

Efficient Mesh Generation Using Subdivision Surfaces

126 SISTEMAS
& TELEMÁTICA Vol. 6 No. 12 • Julio - Diciembre de 2008

the ICESI University. Beneficiary
of the Coimbra Scholarship at the

Universitá degli Studi di Siena.

He was part of the Colombian Te-

lemedicine Centre. He is lecturer

at the ICESI and the Universidad

Javeriana where he leads the
DESTINO research group. He is

a PhD candidate at the University

of Otago.

Dr. Geoff Wyvill. BA in Physics
from Oxford, MSc and PhD in

Computer Science from Bradford.
Professor at the Department of

Computer Science at the Uni-

versity of Otago. He directs the

Computer Graphics lab at the

Computer Science Department.

Teaching over 30 years, he ac-

counts over 100 publications in

Computer Graphics and is mem-

ber of several editorial boards.

Dr. Brendan McCane. Received

his BSc(Hons) and PhD from
James Cook University of North
Queensland. He joined the Depar-

tment of Computer Science at the

University of Otago in 1997 and

has been Head of Department

since 2007. His research interests

include computer vision, pattern

recognition, medical imaging,

machine learning and computer

graphics.

