Remote Sensing for Agricultural Crops Based on a Low Cost Quadcopter
DOI:
https://doi.org/10.18046/syt.v13i34.2092Keywords:
AR Drone, altitude control, path planner, precision agriculture, quadcopter, remote sensing.Abstract
This paper presents a proposal for information gathering from crops by means of a low-cost quadcopter known as the AR Drone 2.0. To achieve this, we designed a system for remote sensing that addresses challenges identified in the present research, such as acquisition of aerial photographs of an entire crop and AR Drone navigation on non-planar areas arises. The project is currently at an early stage of development. The first stage describes platform and hardware/software tools used to build the proposed prototype. Second stage characterizes performance experiments of sensors stability and altitude in AR Drone, in order to design an altitude strategy control over non-flat crops. In addition, path planning algorithms based on shortest route by graphs (Dijkstra, A* and wavefront propagation) are evaluated with simulated quadcopter. The implementation of the shortest path algorithms is the beginning to full coverage of a crop. Observations of quadcopter behavior in Gazebo simulator and real tests demonstrate viability to execute the project by using AR Drone like platform of a remote sensing system to precision agriculture.
References
ArduPilot autopilot suite (n.d.). APM Multiplataform Autopilot DRONECODE. (3DRobotics) Recuperado el 12 de Mayo de 2015, de http://ardupilot.com/
Arkin, R.C. (1990). Integrating behavioral, perceptual, and world knowledge in reactive navigation. Robotics and Autonomous Systems, 6(1), 105-122.
Bayar, V., Akar, B., Yayan, U., Yavuz, H. S., & Yazici, A. (2014). Fuzzy logic based design of classical behaviors for mobile robots in ROS middleware. In Innovations in Intelligent Systems and Applications (INISTA), Proceedings (pp.162-169). IEEE.
Bongiovanni, R., & Lowenberg-Deboer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5(4), 359-387.
Bristeau, P. J., Callou, F., Vissiere, D., & Petit, N. (2011, August). The navigation and control technology inside the ar. drone micro uav. In Preprints of the 18th IFAC World Congress Milano (Italy) August 28 - September 2, 2011, (Vol. 18, No. 1, pp.1477-1484).
Chee, K., & Zhong, Z. (2013). Control, navigation and collision avoidance for an unmanned aerial vehicle. Sensors and Actuators A: Physical, 66-76.
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 269-271.
Galceran, E., & Carreras, M. (2013). A survey on coverage path planning for robotics. Robotics and Autonomous Systems, 61(12), 1258-1276.
Gómez-Candón, D., De Castro, A., & López-Granados, F. (2014). Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precision Agriculture, 5(1), 44-56.
Grenzdorffer, G., Engel, A., & Teichert, B. (2008). The photogrammetric potential of low-cost UAVs in forestry and agriculture. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 31(B3), 1207-1214.
Guclu, A., & Arikan, K. B. (2012). Attitude and altitude control of an outdoor quadrotor [doctoral dissertation]. Atilim University: Ankara, Turkey.
Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4(2), 100-107.
Jannoura, R., Brinkmann, K., Uteau, D., Bruns, C., & Joergensen, R. G. (2015). Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter. Biosystems Engineering, 129, 341-351.
Jian-Guo, G., & Jun, Z. (2008). Altitude control system of autonomous airship based on fuzzy logic. In Systems and Control in Aerospace and Astronautics, 2008. (pp.1-5). IEEE.
Ji-hua, M., & Bing-fang, W. (2008). Study on the crop condition monitoring methods with remote sensing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B8), 945-950.
Joseph, G. (2005). Fundamentals of remote sensing. Hyderabad, India: Universities Press.
Li, J., & Li, Y. (2011). Dynamic analysis and PID control for a quadrotor. Mechatronics and Automation (ICMA), 2011 International Conference on (pp. 573-578). IEEE.
Mehranpour, M. R., Emamgholi, O., Shahri, A., & Farrokhi, M. (2013). A new fuzzy adaptive control for a Quadrotor flying robot. En Fuzzy Systems (IFSC), 2013 13th Iranian Conference on (págs. 1-5). IEEE.
Meier, L., Camacho, J., Godbolt, B., Goppert, J., Heng, L., Lizarraga, M., ... & Tridgell, A. (2010). QGroundControl: Ground Control Station for Small Air-Land-Water Autonomous Unmanned Systems. Retrieved from: http://qgroundcontrol.org/
Pignon, P., & Choset, H. (1998). Coverage path planning: The boustrophedon cellular decomposition. In Field and Service Robotics (pp. 203-209). London, UK: Springer.
Primicerio, J., Di Gennaro, S. F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., & Vaccari, F. P. (2012). A flexible unmanned aerial vehicle for precision agriculture. Precision Agriculture, 13(4), 517-523.
Shengyi, Y., Kunqin, L., & Jiao, S. (2009). Design and simulation of the longitudinal autopilot of uav based on self-adaptive fuzzy pid control. In Computational Intelligence and Security, 2009. (pp. 634-638). IEEE.
Skiena, S. S. (1998). The algorithm design manual: Text. New york, NY: Springer Verlag.
Sugiura, R., Noguchi, N., & Ishii, K. (2005). Remote-sensing technology for vegetation monitoring using an unmanned helicopter. Biosystems Engineering, 90(4), 369-379.
Tailanian, M., Paternain, S., Rosa, R., & Canetti, R. (2014). Design and implementation of sensor data fusion for an autonomous quadrotor. In Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International (pp.1431-1436). IEEE.
Tanveer, M. H., Hazry, D., Warsi, F. A., & Joyo, M. K. (2013). Stabilized controller design for attitude and altitude controlling of quad-rotor under diisturbance and noisy conditios. American Journal of Applied Sciences, 10(8), 819-831.
Turner, D., Lucieer, A., & Watson, C. (2011). Development of an Unmanned Aerial Vehicle (UAV) for hyper resolution vineyard mapping based on visible, multispectral, and thermal imagery. En Proceedings of 34th International Symposium on Remote Sensing of Environment (pp.1-4). ISPRS. Retrieved from http://www.isprs.org/proceedings/2011/ISRSE-34/211104015Final00547.pdf
Valente, J. (2011). An aerial robotic framework to address area coverage in precision agriculture practices [doctoral dissetation]. Universidad Politécnica de Madrid: Spain.
Downloads
Published
Issue
Section
License
This journal is licensed under the terms of the CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/legalcode).