Automated Image Analysis Method for p-vivax Malaria Parasite Detection in Thick Film Blood Images

Authors

  • Leonardo Yunda Universidad Santiago de Cali
  • Andrés Alarcón Laboratory of Applied Remote Sensing and Image Processing - Universidad de Puerto Rico, Recinto Mayagüez.
  • Jorge Millán Sigma Biomedical, Hialeah, FL

DOI:

https://doi.org/10.18046/syt.v10i20.1151

Keywords:

Malaria, Thick film microscopy, Neuronal networks, principal component analysis.

Abstract

An image analysis method for Malaria parasite detection in thick film blood images is described. The developed method uses a combination of AGNES and Morphological Gradient techniques in the image segmentation stage. Wavelet-based feature extraction is followed by a neural network classification stage. Principal Component Analysis (PCA) is used to reduce the number of features and improve the performance of the neuronal network.  The true positive rate for determining a specific parasite was of 77.19%, while a 76.45% was obtained in determining at least a parasite in a microscopy image.

Author Biographies

  • Leonardo Yunda, Universidad Santiago de Cali

    Dean of Engineering School (Universidad Santiago de Cali, USC) and Director-Researcher in T@lebio, a Research Group within USC. Electronic Engineer (2000) and Master in Engineering (2006) from Universidad del Valle; Master in Telematics Engineering (2010) y Ph.D candidate in Telematics Engineering from Universidad de Vigo (España). Since 2001 until 2004 he worked as a researcher and development engineer in the Fraunhofer-IBMT Technology Center (Hialeah, FL), a branch of the Fraunhofer Institute for Biomedical Technology in St. Ingbert, Germany. His mayor areas of interest are Telemedicine and Digital Signal Processing.

  • Andrés Alarcón, Laboratory of Applied Remote Sensing and Image Processing - Universidad de Puerto Rico, Recinto Mayagüez.

    Electronic Engineer with a Master degree in Electronic Engineering (both from Universidad del Valle), presently linked to the Laboratory for Applied Remote Sensing and Image Processing (LARSIP), a multidisciplinary laboratory dedicated to the research and implementation of Remote Sensing, Hyperspectral Image Processing, Signal and Image Processing, Geographical Information Systems (GIS),Emergency Response Systems, Global Positioning Systems (GPS) technologies, Applied Electromagnetics and Bio-Optics, located within the Department of Electrical and Computer Engineering at the University of Puerto Rico, Mayagüez Campus. His mayor areas of interest are Communication’s Networks and Digital Signal Processing.

  • Jorge Millán, Sigma Biomedical, Hialeah, FL
    Physics (Universidad del Valle, 1988) with a Master degree in Physics (Universidad de Puerto Rico, 1993) and Electric Engineering (Pennsylvania University, 2000), and a Ph.D., in Biomedical Engineering (Universidad de Miami, 2006). Executive Director from Sigma Biomedical (Hialeah, FL), a contract research and development biomedical engineering company established to serve the scientific, engineering and regulatory needs of the biomedical sector, who provides custom solutions by a synergy of advanced instrumentation, biomedical signal processing, health telematics, medical imaging, medical device testing, software verification and validation, software and hardware development, mechanical engineering as well as medical device regulatory expertise.

References

Angulo, J. & Serra, J. (2005). Segmentación de imágenes en color utilizando histogramas bi-variables en espacios de color polares luminancia/saturación/matiz. Paris, France: Centro de Morfología Matemática.

Angulo, J. (2003). Morphologie mathématique et indexation d’images couleur. Application à la microscopie en biomédecine (Doctoral Thesis), University of Minas, Paris, Francia.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679-698

Getz G. & Levine E. (2000). Coupled two-way clustering analysis of gene microarray data. Proceedings of the National Academy of sciences of the United States of America, 97(22), 12079.12084.

Gutiérrez, S., & Arróspide, N. (2003). Manual de procedimientos de laboratorio para el diagnostico de Malaria (Serie de Normas Tecnicas N 39). Lima, Perú: Instituto Nacional de Salud.

Hanscheid, T. (2003). Current strategies to avoid misdiagnosis of malaria. Clinical Microbiology and Infection, 9(6), 497–504.

Iqbal J, Khalid N, & Hira P.R. (2002), Comparison of two commercial assays with expert microscopy for confirmation of symptomatically diagnosed malaria. Journal of Clinical Microbiology, 40(12), 4675-4678

Katz, A. (2000). Image analysis and supervised learning in the automated differentiation of white blood cells from microscopic images (Master´s thesis). RMIT University, Melbourne, Australia.

Kim, Y., & Romeike, B. (2006).Automated nuclear segmentation in the determination of the Ki-67 labeling index in meningiomas. Clinical Neuropathology, Vol 25(2), 67-73.

Le, M.T., Bretschneider, T., Kuss, C & Preiser, P. (2008, march). A novel semi-automatic image processing approach to determine Plasmodium falciparum parasitemia in Giemsa-stained thin blood smears”, BMC Cell Biology, 9(art.15).

Mens, P., Spieker, N., Omar, S., Heijnen, M., Schallig, H., & Kager P.A. (2007). Is molecular biology the best alternative for diagnosis of malaria to microscopy? A comparison between microscopy, antigen detection and molecular tests in rural Kenya and urban Tanzania. Tropical Medicine & International Health, 12(2), 238-244.

Moody, A (2002). Rapid diagnostic tests for malaria parasites. Clinical Microbiology Reviews 15(1), 66-78.

Murray, C.K., Bell, D., Gasser, R.A., & Wongsrichanalai, C. (2003). Rapid diagnostic testing for malaria. Tropical Medicine & International Health, 8(10): 876–883.

Pinzón, R., Garavito, G., Hata, Y., Arteaga, L., García, J.D. (2004). Desarrollo de un Sistema de Análisis Automático de Imágenes de Extendidos Sanguíneos. En Memorias del Congreso Espanol de la Sociedad de Ingeniería Biomédica, 2004, pp.45-59

Premaratnea, S., Dharshani, N., Shyam, F., Pererab, W., & Rajapakshab, A. (2007). A neural network architecture for automated recognition of intracellular malaria. Retrieved from http://kosmi.snubi.org/2003_fall/APAMI_CJKMI/O3-3-020-Premaratne-0731.pdf

Rao, K (2004). Application of mathematical morphology to biomedical image processing (Ph.D. thesis). Westminster University, London, UK.

Romero, E., & Sarmiento, W.J (2004). Automatic detection of malaria parasites in thick blood films stained with Haematoxylin-Eosin (presentado en III Iberian Latin American and Caribbean congress of Medical Physics, ALFIM 2004). Rio de Janeiro, Brazil.

Ruberto, C., Dempster, A., Khan, S., & Jarra, B. (2000). Automatic thresholding of infected blood images using granulometry and regional extrema. In Proceedings, 15th. International Conference on Pattern Recognition, pp.3445-3448.

Ruberto, C., Dempster, A., Khan, S., & Jarra, B. (2002). Analysis of infected blood cell images using morphological operators. Image and Vision Computing, 20(2),133-146.

Sio, S., Sun, W., Kumar, S., Bin, W., Tan, S., Ong, S., Kikuchi, H., Oshima, Y., & Tan, K. (2007). Malaria count: an image analysis-based program for the accurate determination of parasitemia. Journal of Microbiological Methods 68 (1), 11–18.

Tek, F.B., Dempster, A., & Kale, I. (2009, July). Computer vision for microscopy diagnosis of malaria. Malaria Journal, 8. doi:10.1186/1475-2875-8-153

Van der Laan, M. & Pollard, K. (2003). Hybrid clustering of gene expression data with visualization and the bootstrap. Journal of Statistical Planning and Inference, 117(2). 275-303.

Wu, K., Gauthier, D., &Levine, M.D. (1995). Live cell image segmentation. IEEE Transactions on Biomedical Engineering, 42(1), 1-12.

Yang, L., Meer, P., & Foran, D. (2005). Unsupervised segmentation based on robust estimation and color active contour models. IEEE Transactions on Information Techonology in Biomedicine, 9(3), 475-486

Downloads

Published

2012-03-31

Issue

Section

Original Research