AVO: una aplicación para redes Vanet enfocada en el ahorro de gasolina y la reducción de emisiones de CO2

Autores/as

  • Oscar Arley Orozco Universidad Icesi, Cali
  • Gonzalo Llano Universidad Icesi, Cali

DOI:

https://doi.org/10.18046/syt.v12i29.1803

Palabras clave:

AVO, CO2, Consumo de gasolina, Eficiencia Energética, Gases de efecto invernadero, I2V, VANET.

Resumen

Con el aumento en el número de vehículos en las carreteras, el elevado flujo vehicular se ha convertido en un problema de movilidad y de salud pública para las instituciones gubernamentales y para las personas; ya que el tiempo de viaje, la gasolina consumida y las emisiones de Gases de Efecto Invernadero [GEI] han aumentado considerablemente. Por esto se requieren políticas, medidas y acciones para disminuir el impacto que está teniendo dicho incremento. Bajo este contexto, se ha desarrollado una aplicación para redes vehiculares en los simuladores SUMO y OMNeT++ que optimiza el consumo de gasolina y disminuye las emisiones de GEI, demostrando que si los vehículos respetan una velocidad preestablecida y estudiada anteriormente, el consumo de gasolina y las emisiones de GEI disminuyen considerablemente en comparación a los vehículos que no siguen dicha velocidad

Biografía del autor/a

  • Oscar Arley Orozco, Universidad Icesi, Cali
    Electronic and Telecommunications Engineer (2013) from Universidad del Cauca (Popayán, Colombia). Young Researcher of Colciencias at the Informatics and Telecommunications Research Group (i2t) at Universidad Icesi. Topics of interest are Vehicular Ad hoc Networks, Wireless Communications and Communications for Intelligent Transportation Systems.
  • Gonzalo Llano, Universidad Icesi, Cali
    Ph.D., in Telecommunications (2009) and Master in Technology, Communication Systems and Networks (2008) of the Polytechnic University of Valencia, Spain and Computer Specialist Organizational Management from the Universidad Icesi. He is currently Associate Professor and researcher at the Department of Information and Communications Technology attached to the Engineering Faculty at the Universidad Icesi

Referencias

Bai, F., Krishnan, H., & Sadekar V. (2006). Towards Characterizing and Classifying Communication-based Automotive Applications from a Wireless Networking Perspective. Warren, MI: General Motors

Car 2 Car Communication Consortium [C2C-CC]. (2007). C2C-CC Manifesto: Overview of the C2C-CC system, version 1.1. Retrieved from http://www.car-to-car.org/index.php?id=31&L=oksjf

Departamento Administrativo Nacional de Estadística [DANE] (2013, Dic.17). Grandes almacenes e hipermercados minoristas, GAHM, III Trimestre 2013 [Press release]. Retrieved from http://www.dane.gov.co/daneweb_V09/files/investigaciones/boletines/almacenes/cp_GAHMCV_IIItrim13.pdf

Di Felice, M., Ghandour A., Artail, H., & Bononi L. (2012). On the Impact of Multi-channel Technology on Safety-Message Delivery in IEEE 802.11p/1609.4 Vehicular Networks. 21th International Conference on Computer Communications and Networks (p. 1-8). Munich: IEEE.

Doolan, R. & Muntean G. (2013). VANET-enabled Eco-friendly Road Characteristics-aware Routing for Vehicular Traffic. 77th IEEE Vehicular Technology Conference (p. 1-5), Dresden, Germany. Piscataway, NJ: IEEE.

Draeger, K. (2007). BMW Group Research and Technology. Creative Power – customer oriented and efficient. [white paper]. Retrieved from http://www.bmwgroup.com/e/0_0_www_bmwgroup_com/unternehmen/publikationen/aktuelles_lexikon/_pdf/alex_forschung_technik_10_05_final.pdf

Ford Jr. W. & Mulally A. (2013). Sustainability Report Summary 2012/13 [white paper]. Retrieved from http://corporate.ford.com/doc/sr12-summary.pdf

General Motors. (2013). General Motors collaborative research lab, Electrical & Computer Engineering. Carnegie Mellon University. Retrieved from http://gm.web.cmu.edu

Greene, D. (2011). Reducing Greenhouse Gas Emissions From Transportation: A presentation to the Legislative Commission on Global Climate Change. Raleigh, NC: Oak Ridge National Laboratory

Guo, H. (2009). Automotive Informatics and Communicative Systems. Hershey, PA: IGI Global Snippet

Hausberger, S., Rexeis, M., Zallinger, M., & Luz, R. (2009). Emission Factors from the Model PHEM for the HBEFA Version 3. Report Nr. I-20/2009 Haus-Em 33/08/679 from 07.12.

Idigoras, J. (2009). iTETRIS: Plataforma Europea para el Análisis del Impacto de Sistemas ITS Cooperativos en la Gestión del Tráfico. Andorra: CBT Communication Engineering

Institute of Electrical and Electronics Engineers [IEEE]. (2010). IEEE Std. IEEE 802.11p. Retrieved from http://ieeexplore.ieee.org/servlet/opac?punumber=5514473

International Business Machines Corporation [IBM]. (2010). The Case for Smart Transportation [white paper]. Retrieved from http://www-07.ibm.com/innovation/my/exhibit/documents/pdf/2_The_Case_For_Smarter_Transportation.pdf

International Telecommunications Union [ITU]. (2007). Intelligent Transport Systems and CALM. ITU-T Technology Watch Report 1. Geneva, Switzerland: ITU

Jakubiak, J. (2008). State of the Art and Research Challenges for VANETs. Consumer Communications and Networking Conference (p. 912-916). Danvers, MA: IEEE.

Jian, D. & Delgrossi L. (2008). IEEE 802.11p: Towards an international standard for wireless access in vehicular environments. Proceedings of IEEE Vehicular Technology Conference (p. 2036-2040), Marina Bay, Singapore. Piscataway, NJ: IEEE

Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., & Weil T. (2011). Vehicular Networking: A Survey and Tutorial on Requirements, Architectures, Challenges, Standards and Solutions. IEEE Communications Surveys & Tutorials, 13(4), 584-616

Kenney, J. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, 99(7), 1162-1182

Konstantinopoulou, L. (2012). iMobility Support. Retrieved from http://www.imobilitysupport.eu/imobility-support

Li, Y. (2012). An Overview of the DSRC/WAVE Technology. 7th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (p. 544-558). Houston, TX: ICST.

Mehta, T., Kottapalli, A., Mahmassani, H., & Bhat C. (2010). Intelligent Transportation Systems and the Environment. Technical Report 4197-S. Austin, TX: The University of Texas at Austin.

Orozco, A., Michoud, R., & Llano G. (2012). Efficiency applications for vehicular networks: Towards green transportation systems. 4th IEEE Latin-American Conference on Communications, Cuenca, Ecuador. Piscataway, NJ: IEEE.

Orozco, O., Orozco, A., & Llano G. (2014). Aplicaciones Vehiculares orientadas hacia la Eficiencia Energética e Impacto Ambiental. Unpublished Paper. Cali, Colombia: Universidad Icesi.

Qian, Y. & Moayeri N. (2008). Design Secure and Application-Oriented VANETs. Proceedings of IEEE Vehicular Technology Conference (p. 2794-2799), Marina Bay, Singapore. Piscataway, NJ: IEEE.

Senouci, S., Moustafa, H., & Jerbi M. (2009). Vehicular Networks: Techniques, Standards and Applications. Boston, MA: Auerbach

Stampoulis, A. & Chai Z. (2007). A Survey of Security in Vehicular Networks. Project CPSC 534. New Haven, CT: Yale University

Tsugawa, S. & Kato S. (2010). Energy ITS: Another Application of Vehicular Communications. IEEE Communications Magazine, 48(11), 120-126

Ülgen, O. (2006). Simulation methodology: A practitioner’s perspective. Dearborn, MI: University of Michigan

United States Department of State (2010). U.S. Climate Action Report – 2010 [Fifth National Communication of the United States of America Under the United Nations Framework Convention on Climate Change]. Retrieved from http://unfccc.int/resource/docs/natc/usa_nc5.pdf

United States Environmental Protection Agency [EPA]. (2008). Average Annual Emissions and Fuel Consumption for Gasoline Fueled Passenger Cars and Light Trucks [technical report EPA420-F-08-024]. Retrieved from http://www.epa.gov/otaq/consumer/420f08024.pdf

Descargas

Publicado

2014-06-30

Número

Sección

Investigación científica y tecnológica