Solución ubicua basada en NFC para el análisis de datos turísticos en un ambiente de ciudades inteligentes
DOI:
https://doi.org/10.18046/syt.v13i32.2016Palabras clave:
Contexto, computación ubicua, smart city, NFC, turismo, análisis con cadenas de Markov, movimientos y turistas.Resumen
El registro y el análisis detallado de las trayectorias del visitante y los movimientos individuales en tiempo real de las decenas de miles de visitantes es una de las áreas más importantes de la investigación en turismo. Para observar los movimientos turísticos, está disponible una variedad de técnicas. Nuevas técnicas de seguimiento se están explorando y gracias al avance de la tecnología es posible disponer en cualquier momento y desde cualquier lugar (computación ubicua) de la de información que se ha utilizado para registrar el movimiento de turistas, con alta resolución. En estos entornos (ambientes etiquetados) donde el usuario interactúa con su medio ambiente, una tecnología emergente conocida como Near Field Communication [NFC] ofrece una manera natural para la interacción entre los usuarios y su entorno. Este artículo elabora una propuesta ubicua, basada en NFC, que permite obtener datos turísticos en tiempo real que son analizados con el método de cadenas de Markov por medio de pruebas experimentales y estadísticas, gracias a que se demuestra que el movimiento de un turista está influenciado por el estado o sitio turístico donde se encuentre antes de pasar a otro, corroborando la hipótesis que indica que es posible capturar información dejada por los turistas por medio de herramientas tecnológicas, y que gracias al procesamiento de esa información se puede obtener una traza que muestre la actividad realizada, la misma que, por medio de su visualización permitirá la toma de decisiones que favorezcan la actividad turística como parte de la economía regional y nacional.
Referencias
Ailisto, H., Pohjanheimo, L., Välkkynen, P., Strömmer, E., Tuomisto, T., & Korhonen, I. (2006). Bridging the physical and virtual worlds by local connectivity-based physical selection. Personal and Ubiquitous Computing, 10(6), 333-344.
Akaike, H. (2014, May). Statistical Inference and Measurement of Entropy. In Scientific Inference, Data Analysis, and Robustness: Proceedings of a Conference Conducted by the Mathematics Research Center, the University of Wisconsin—Madison, November 4–6, 1981 (p. 165). Academic Press.
Arrowsmith, C. & Inbakaran, R. (2002). Estimating environmental resiliency for the Grampians National Park, Victoria, Australia: a quantitative approach. Tourism Management, 23(3), 295-309.
Arrowsmith, C., Chhetri, P., & Zanon, D. (2005). Monitoring visitor patterns of use in natural tourist destinations. In Taking Tourism to the Limits: Issues, Concepts and Managerial Perspectives, (pp. 33-52). Amsterdam, The Netherlands: Elsevier
Asakura, Y. & Iryo, T. (2007). Analysis of tourist behaviour based on the tracking data collected using a mobile communication instrument. Transportation Research Part A: Policy and Practice, 41(7), 684-690.
Bajaj, R., Ranaweera, S. L., & Agrawal, D. P. (2002). GPS: location-tracking technology. Computer, 35(4), 92-94.
Borrego-Jaraba, F., Ruíz, I. L., & Gómez-Nieto, M. Á. (2011). A NFC-based pervasive solution for city touristic surfing. Personal and Ubiquitous Computing, 15(7), 731-742.
Buhalis, D. & Amaranggana, A. (2013). Smart Tourism Destinations. In Information and Communication Technologies in Tourism 2014 (pp. 553-564). Springer International Publishing.
Cheverst, K., Davies, N., Mitchell, K., & Friday, A. (2000). Experiences of developing and deploying a context-aware tourist guide: the GUIDE project. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, 20-31. New York, NY: ACM.
Chon, J., & Cha, H. (2011). Lifemap: A smartphone-based context provider for location-based services. IEEE Pervasive Computing, 10(2), 58-67.
Coskun, V., Ozdenizci, B., & Ok, K. (2013). A survey on near field communication (NFC) technology. Wireless Personal Communications, 71(3), 2259-2294.
Davies, N., Cheverst, K., Mitchell, K., & Efrat, A. (2001). Using and determining location in a context-sensitive tour guide. Computer, 34(8), 35-41.
Digital Tourism Think Tank [DTTT] (2014). 2014 year in digital travel [video]. Retrieved from http://youtu.be/rJZbtg_irZU
Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., & Burgelman, J.-C. (2001). Scenarios for ambient intelligence in 2010 [online]. Seville, Spain: ISTAG. Retrieved from http://www.ist.hu/doctar/fp5/istagscenarios2010.pdf
Dumont, B., Roovers, P., & Gulinck, H. (2005). Estimation of off-track visits in a nature reserve: a case study in central Belgium. Landscape and Urban Planning, 71(2), 311-321.
Egger, R. (2013). The impact of near field communication on tourism. Journal of Hospitality and Tourism Technology, 4(2), 119-133.
Fennell, D. A. (1996). A tourist space-time budget in the Shetland Islands. Annals of Tourism Research, 23(4), 811-829.
Fundación Telefónica (2011). Smart Cities: un primer paso hacia la Internet de las Cosas. Madrid, Spain: Fundación Telefónica.
Girardin, F., Vaccari, A., Gerber, A., Biderman, A., & Ratti, C. (2009). Quantifying urban attractiveness from the distribution and density of digital footprints. International Journal of Spatial Infrastructures Research, 4, 175-200
Hadley, D., Grenfell, R., & Arrowsmith, C. (2003). Deploying location-based services for nature-based tourism in non-urban environments [conference paper in Spatial Sciences Coalition Conference, Canberra-2003].
Haritaoglu, I., Harwood, D., & Davis, L. (2000). W 4: Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 809-830.
Hurtado, M. (2011). Aportes al proceso administrativo del proyecto de trazabilidad para el sistema de información turística del departamento del Cauca como iniciativa piloto [thesis]. Universidad del Cauca: Popayán, Colombia.
Kuo, R. J., Wang, H. S., Hu, T. L., & Chou, S. H. (2005). Application of ant K-means on clustering analysis. Computers & Mathematics with Applications, 50(10), 1709-1724.
Leiper, N. (2003). Tourism management. Australia: Pearson
Loiterton, D. & Bishop, I. (2005). Virtual environments and location-based questioning for understanding visitor movement in urban parks and gardens [conference paper in Real-time Visualisation and Participation, Dessau-Germany]. Available at http://www.kolleg.loel.hs-anhalt.de/studiengaenge/mla/mla_fl/conf/pdf/conf2005/30loiterton_c.pdf
Loke, S. (2005). Context-aware Pervasive systems: Architectures for a new breed of applications. Boca Raton, FL: Auerbach.
McLaren, D. (2003). Rethinking tourism and ecotravel. Bloomfield, CT: Kumarian.
Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., & Morris, R. (2011). Smarter cities and their innovation challenges. Computer, 44(6), 32-39.
NFC Forum (2015). [online]. Retrieved from http://nfc-forum.org/
O'Connor, A., Zerger, A., & Itami, B. (2005). Geo-temporal tracking and analysis of tourist movement. Mathematics and Computers in Simulation, 69(1), 135-150.
Ogilvie, F. (1933). The tourist movement: An economic study. London, UK: PS King & Son.
O'Neill, E., Kostakos, V., Kindberg, T., Penn, A., Fraser, D. S., & Jones, T. (2006). Instrumenting the city: Developing methods for observing and understanding the digital cityscape. In UbiComp 2006: Ubiquitous Computing (pp. 315-332). Berlin-Heidelberg, Germany: Springer
Pearce, D. (1995). Tourism today: A geographical analysis [2nd ed.]. London, UK: Longman Scientific & Technical.
Pesonen, J. & Horster, E. (2012). Near field communication technology in tourism. Tourism Management Perspectives, 4, 11-18.
PrimeFaces (2014). [online]. Retrieved from http://www.primefaces.org/
Ramirez, G., Chantré, A., & Delgado, C. (2014). Proyecto piloto de trazabilidad turística [internal document]. Universidad del Cauca: Popayán, Colombia.
Remedios, D., Sousa, L., Barata, M., & Osorio, L. (2006). NFC technologies in mobile phones and emerging applications. In Information Technology for Balanced Manufacturing Systems (pp. 425-434). New York, NY: Springer.
Roland, M. & Langer, J. (2010). Digital signature records for the NFC data exchange format. In Near Field Communication (NFC), 2010 Second International Workshop on, (pp. 71-76). Piscataway, NJ: IEEE.
Ronay, E. & Egger, R. (2013). NFC smart city: Cities of the future—a scenario technique application. Information and Communication Technologies in Tourism 2014 [Proceedings of the International Conference in Dublin, Ireland, January 21-24, 2014], (pp. 565-577). Cham, Switzerland: Springer.
Russo, A. P., Clave, S. A., & Shoval, N. (2010). Advanced visitor tracking analysis in practice: explorations in the PortAventura theme park and insights for a future research agenda. Information and Communication Technologies in Tourism 2010, 159-170.
Spitzer, F. (1964). Principles of random walk. New York, NY: Springer.
Tchetchik, A., Fleischer, A., & Shoval, N. (2009). Segmentation of visitors to a heritage site using high-resolution time-space data. Journal of Travel Research, 48(2), 216-229.
Tiru, M., Kuusik, A., Lamp, M. L., & Ahas, R. (2010). LBS in marketing and tourism management: measuring destination loyalty with mobile positioning data. Journal of Location Based Services, 4(2), 120-140.
Tobler, W. (1997). Movement modelling on the sphere. Geographical and Environmental Modelling, 1(1), 97-103.
United Nations World Tourism Organization [UNWTO]. (2014, Jan. 20). International tourism exceeds expectations with arrivals up by 52 million in 2013 [press release]. Retrieved from http://media.unwto.org/press-release/2014-01-20/international-tourism-exceeds-expectations-arrivals-52-million-2013
Van Setten, M., Pokraev, S., & Koolwaaij, J. (2004). Context-aware recommendations in the mobile tourist application COMPASS. Lecture Notes in Computer Science [Adaptive hypermedia and adaptive web-based systems], 3137, 235-244
Wang, B. & Manning, R. (1999). Computer simulation modeling for recreation management: A study on carriage road use in Acadia National Park, Maine, USA. Environmental Management, 23(2), 193-203.
Wang, Y., Lim, E. P., & Hwang, S. Y. (2006). Efficient mining of group patterns from user movement data. Data & Knowledge Engineering, 57(3), 240-282.
Xia, J. & Arrowsmith, C. (2005). Managing scale issues in spatio-temporal movement of tourists modelling. In International Congress on Modelling and Simulation. Retrieved from http://ip-103-1-174-100.ip.secureserver.net/modsim05/papers/xia.pdf
Xia, J. (2007). Modelling the spatial-temporal movement of tourists [PhD thesis]. RMIT University: Melbourne, Australia
Xia, J., Zeephongsekul, P., & Arrowsmith, C. (2009). Modelling spatio-temporal movement of tourists using finite Markov chains. Mathematics and Computers in Simulation, 79(5), 1544-1553.
Zimmermann, K. F. & Constant, A. F. (2003). The dynamics of repeat migration: A Markov chain analysis [discussion paper online]. Retrieved from http://www.econstor.eu/handle/10419/18135
Descargas
Publicado
Número
Sección
Licencia
Esta publicación está licenciada bajo los términos de la licencia CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.es)