Un modelo de arquitectura multicapas escalonado para Big Data
DOI:
https://doi.org/10.18046/syt.v14i37.2257Palabras clave:
Big data, data warehouse, arquitectura multicapas escalonada, datos no estructurados repetitivos, datos no estructurados no repetitivos, hadoop, mapreduce, noSql.Resumen
Debido a la necesidad del análisis para los nuevos tipos de datos no estructurados, repetitivos y no repetitivos, surge Big Data. Aunque el tema ha sido extensamente difundido, no hay disponible una arquitectura de referencia para sistemas Big Data que incorpore el tratamiento de grandes volúmenes de datos en bruto, agregados y no agregados ni propuestas completas para manejar el ciclo de vida de los datos o una terminología estandarizada en ésta área, menos una metodología que soporte el diseño y desarrollo de dicha arquitectura. Solo hay arquitecturas de pequeña escala, de tipo industrial, orientadas al producto, que se reducen al alcance de la solución de una compañía o grupo de compañías, que se enfocan en la tecnología, pero omiten el punto de vista funcional. El artículo explora los requerimientos para la formulación de un modelo arquitectural que soporte la analítica y la gestión de datos estructurados y no estructurados, repetitivos y no repetitivos, y contempla algunas propuestas arquitecturales de tipo industrial o tecnológicas, para al final proponer un modelo lógico de arquitectura multicapas escalonado, que pretende dar respuesta a los requerimientos que cubran, tanto a Data Warehouse, como a Big Data.
Referencias
Apache Hive TM. (n.d.). Retrieved from https://hive.apache.org/
Apache Impala. (n.d). Retrieved from: http://www.cloudera.com/products/apache-hadoop/impala.html
Apache Sqoop (2016, march 4). Retrieved from: http://sqoop.apache.org/
Apache SparkTM-Lightning-fast cluster computing. (n.d.). Retrieved from: http://spark.apache.org/
Apache Thrift - Home. (n.d.). Retrieved from https://thrift.apache.org/
Apache ZooKeeper - Home. (n.d.). Retrieved from https://zookeeper.apache.org/
Architecture - Apache Drill. (n.d.). Retrieved from http://drill.apache.org/architecture/
Bedi, P., Jindal, V., & Gautam, A. (2014). Beginning with big data simplified. In: Data Mining and Intelligent Computing (ICDMIC), 2014 International Conference on. IEEE. doi:10.1109/ICDMIC.2014.6954229
Brewer, E. (2012). CAP twelve years later: How the “rules” have changed. Computer. 45(2), 23-29.
Carter, S. (2013, Feb, 21). Social and BIG Data! #socbiz #ibmsocialbiz #bigdata #socialbusiness. Retrieved from: http://socialbusinesssandy.com/tag/big-data-2/page/14/
Chandarana, P. & Vijayalakshmi, M. (2014). Big data analytics frameworks. In Circuits, Systems, Communication and Information Technology Applications (CSCITA), 2014 international conference on (pp. 430-434. IEEE.
Cox, M. & Ellsworth, D. (1997). Application-controlled demand paging for out-of-core visualization [NASA Reports]. Retrieved from: http://www.nas.nasa.gov/assets/pdf/techreports/1997/nas-97-010.pdf
Cuzzocrea, A. (2014). Privacy and security of big data: current challenges and future research perspectives. In: Proceedings of the First International Workshop on Privacy and Security of Big Data (pp. 45-47). New York, NY: ACM. http://doi.acm.org/10.1145/2663715.2669614
Demchenko, Y., Laat, C. & Membrey, P. (2014). Defining architecture components of the big data ecosystem. In: Collaboration Technologies and Systems (CTS), 2014 International Conference on, 104-112. IEEE.
Díaz, Ma. (2011). Evaluación de la herramienta de código libre Apache Hadoop [thesis]. Universidad Carlos III de Madrid Escuela Politécnica Superior: Leganés, España.
Gudivada, V., Rao, D. & Raghavan, V. (2014). NoSQL systems for big data management. In: 2014 IEEE World Congress on Services (pp. 190-197). IEEE.
HDFS architecture guide. (2013, April 8). Retrieved from: http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
Hewlett Packard. (2013). HP Reference Architecture for MapR M5 [technical white paper]. Retrieved from: https://www.mapr.com/sites/default/files/hp_reference_architecture_for_mapr_m5.pdf
Inmon, W. (2005). Building the data warehouse [4a ed.]. Indianapolis, IN: Wiley.
Inmon, W.,Strauss, D. & Neushloss, G. (2008). DW 2.0: The Architecture for the Next Generation of Data Warehousing. Burlington, MA: Morgan Kaufmann
Inmon. H. & Linstedt, D. (2014). Data architecture: A primer for the data scientist: big data, data warehouse and data vault. Waltham, MA: Morgan Kaufmann.
Katal, A., Wazid, M. & Goudar, R. (2013). Big data: Issues, challenges, tools and good practices. In: Contemporary Computing (IC3), 2013 Sixth International Conference on (pp. 404-409). IEEE.
Kimball, R. (2011). The evolving role of the enterprise data warehouse in the era of big data analytics [Kimball Group white paper]. Retrieved from: http://www.montage.co.nz/assets/Brochures/DataWarehouseBigDataAnalyticsKimball.pdf
Kimball, R. (2012). Newly emerging best practices for big data [Kimball Group, white paper]. Retrieved from: http://www.kimballgroup.com/wp-content/uploads/2012/09/Newly-Emerging-Best-Practices-for-Big-Data1.pdf
Kimball, R., Ross, M., Thorthwaite, W., Becker, B. & Mundy, J. (2008). The data warehouse lifecycle toolkit [2a ed.]. Indianapolis, IN: Wiley.
Lomotey, R. K., & Deters, R. (2014). Towards knowledge discovery in big data. In: Service Oriented System Engineering (SOSE), 2014 IEEE 8th International Symposium on (pp. 181-191). IEEE.
MacDonald, A. (2015). Integrating SAP HANA and hadoop. Boston, MA: SAP Press.
Maiorescu, T. (2010). General Information on Business Intelligence and OLAP systems architecture. In: Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on (V.2, pp. 294-297). IEEE.
Manikandan, S. G., & Ravi, S. (2014). Big data analysis using Apache Hadoop. In: IT Convergence and Security (ICITCS), 2014 International Conference on. doi: 10.1109/ICITCS.2014.7021746
Manning, C. & Schütze. H. (1999). Foundations of statistical natural language processing. Cambridge, MA: The MIT.
Marz, N. (n.d). Storm, distributed and fault-tolerant realtime computation. Retrieved from: http://cloud.berkeley.edu/data/storm-berkeley.pdf
Muntean, M., & Surcel, T. (2013). Agile BI - The Future of BI. Informatica Económica, 17(3), 114–124.
Nam, T., Choi, K., Ok, C. & Yeom, K. (2014). Service composition framework for big data service. In: Future Internet of Things and Cloud (FiCloud), 2014 International Conference on (pp. 328-333). IEEE.
Nandimath, J., Banerjee, E., Patil, A., Kakade, P., & Vaidya, S. (2013). Big Data analysis using Apache Hadoop. In: 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI) (pp. 700-703). IEEE.
Oracle Corp. (2015). An enterprise architect's guide to big data [Oracle enterprise architecture - white paper.]. Retrieved from: http://www.oracle.com/technetwork/topics/entarch/articles/oea-big-data-guide-1522052.pdf
Pal, A. & Agrawal, S. (2014). An experimental approach towards big data for analyzing memory utilization on a hadoop cluster using HDFS and MapReduce. In: Networks & Soft Computing (ICNSC), 2014 First International Conference on (pp. 442-447). IEEE.
Schaffner, J., Bog, A., Krüger, J., & Zeier, A. (2009). A hybrid row-column OLTP database architecture for operational reporting. In: M. Castellanos, U. Dayal, & T. Sellis (Eds.), Business intelligence for the real-time enterprise (pp. 61-74). Berlin Heidelberg, Germany: Springer.
Todman, C. (2001). Designing a data warehouse: Supporting customer relationship management. Nueva Jersey, NJ: Prentice Hall.
Vaish, G. (2013). Getting started with NoSQL. Birmingham UK: Packt.
Welcome to ApacheTM Hadoop®! (n.d.). Retrieved from: https://hadoop.apache.org/
YiChuan, S. & Yao, X. (2012). Research of Real-time Data Warehouse Storage Strategy Based on Multi-level Caches. Physics Procedia, 25, 2315–2321.
Zhang, R., Hildebrand, D., & Tewari, R. (2014). In unity there is strength: Showcasing a unified Big Data platform with MapReduce Over both object and file storage. In: Big Data (Big Data), 2014 IEEE International Conference on (pp. 960-966). IEEE.
Descargas
Publicado
Número
Sección
Licencia
Esta publicación está licenciada bajo los términos de la licencia CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.es)