Servicio de video bajo demanda basado en la inferencia emociones de usuario

Autores/as

  • Luis Alejandro Solarte Moncayo Universidad del Cauca
  • Mauricio Sánchez Barragán Universidad del Cauca
  • Gabriel Elías Chanchí Golondrino Universidad del Cauca
  • Diego Fabián Durán Dorado Universidad del Cauca
  • José Luis Arciniegas Herrera Universidad del Cauca

DOI:

https://doi.org/10.18046/syt.v14i38.2286

Palabras clave:

Arousal, VoD, hardware-software system, valence, wearable.

Resumen

El tráfico de video en las redes aumenta de forma exponencial, y con ello la cantidad de tiempo que se debe emplear navegando por catálogos de contenidos. Por ello, son necesarios sistemas de video bajo demanda [VoD] que tengan en cuenta las emociones como parámetro para agilizar el acceso a los contenidos. Este artículo presenta el diseño e implementación de un servicio de VoD basado en emociones, cuyos componentes principales son: el catálogo de contenidos musicales conformado y el sistema hardware-software que permite establecer el nivel de estrés mental y la inferencia de emociones del consumidor, mientras éste interactúa con el sistema. El producto final fue sometido a pruebas de eficiencia y estrés, con resultados satisfactorios: el tiempo empleado por el servidor web con 200 conexiones secuenciales, osciló entre 0,050 y 0,675 segundos, y entre 0,030 y 0,675 segundos, cuando son simultaneas. Logró además responder adecuadamente ante 20.000 conexiones secuenciales, con tiempos de respuesta de menos de 1 a 36 segundos, y soportar, sin colapsar, 18.000 conexiones concurrentes, con tiempos de respuesta entre 7 y 62 segundos. El proyecto proporciona un servicio open source que plantea las bases para futuros proyectos.

Biografía del autor/a

  • Luis Alejandro Solarte Moncayo, Universidad del Cauca
    Estudiante de último semestre de Ingeniería Electrónica y Telecomunicaciones de la Universidad del Cauca
  • Mauricio Sánchez Barragán, Universidad del Cauca
    Estudiante de último semestre de Ingeniería Electrónica y Telecomunicaciones de la Universidad del Cauca
  • Gabriel Elías Chanchí Golondrino, Universidad del Cauca

    Ingeniero en Electrónica y Telecomunicaciones, Magister en Ingeniería Telemática y candidato a Doctor en Ingeniería Telemática.

  • Diego Fabián Durán Dorado, Universidad del Cauca

    Ingeniero en Electrónica y Telecomunicaciones, Magister en Ingeniería (área Telemática) y candidato a Doctor en Ingeniería Telemática.

  • José Luis Arciniegas Herrera, Universidad del Cauca

    Ingeniero en Electrónica y Telecomunicaciones y Especialista en Redes y Servicios Telemáticos de la Universidad del Cauca; y Doctor Ingeniero de Telecomunicación de la Universidad Politécnica de Madrid. Profesor titular del Departamento de Telemática de la Universidad del Cauca.

Referencias

Altgeld, J. & John, D. (2006). The IPTV/VoD Challenge: Upcoming business models. In: Achieving the triple play: Technologies and business models for success (pp. 3-15). Chicago, IL: IEC.

Bayevsky, R., Ivanov, G., Chireykin, L., Gavrilushkin, A., Dovgalevsky, P., Kukushkin, U., & Fleishmann, A. (2002). HRV analysis under the usage of different electrocardiography systems (Methodical recommendations). Moscow, Russia: Committee of New Medical Techniques of Ministry of Health of Russia. Retrieved from: http://www.drkucera.eu/upload_doc/hrv_analysis_(methodical_recommendations).pdf

Buyya, R. & Dastjerdi, A. [Eds]. (2016). Internet of Things: Principles and paradigms. Cambridge, MA: Morgan Kaufmann.

Evans, D. (2011). The internet of things: How the next evolution of the Internet is changing everything [white paper]. Retrieved from: https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

Cisco (2016, june 1). Cisco VNI, forecast and methodology, 2015-2020 [white paper]. Retrieved from: http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf

González, G., López, B., & De la Rosa, J. (2004). Managing emotions in smart user models for recommender systems. ICEIS (5), 187-194.

Hall, J. & Guyton, A. (2011). Tratado de fisiología médica. Madrid, España: Elsevier.

Heilman, K. (1997). The neurobiology of emotional experience. Journal of Neuropsychiatry, 9(3), 439-448.

Jones, R., Fay, M., & Popper, A [Eds.] (2010). Music Perception. New York, NY: Springer.

Choi, J. & Gutierrez, R. (2009). Using heart rate monitors to detect mental stress. In: Proceeding 09 Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks (pp. 219-223). New York, NY: ACM.

Meyers, O. (2007). A Mood-Based music classification and exploration system [tesis]. Massachusetts Institute of Technology: Cambridge, MA.

Mohana, S. & Ravish, H. (2015). Remote monitoring of heart rate and music to tune the heart rate. In: Communication Technologies (GCCT). IEEE.

Mohana, S. R., & Aradhya, H. R. (2015, April). Remote monitoring of heart rate and music to tune the heart rate. In 2015 Global Conference on Communication Technologies (GCCT), (pp. 678-681). IEEE.

Moreno, M., Segrera, S., López, V., Muñoz, M., & Sánchez, L. (2016). Web mining based framework for solving usual problems in recommender systems: A case study for movies' recommendation. Neurocomputing, 176(2), 72-80.

Mukhopadhyay, S. (Ed.). (2015). Wearable electronics sensors. Palmerston North, New Zealand: Springer.

Patil, K., Singh, M., Singh, G., Anjali., & Sharma, N. (2015). Mental stress evaluation using heart rate variability analysis: A review. International Journal of Public Mental Health and Neurosciences, 2(1), 10-16.

Posner, J., Russell, J., & Peterson, B. (2005). The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and psychopathology, 17(03), 715-734.

Pripuzic, K., Zarko, I., Podobnik, V., Lovrek, I., Cavka, M., Petkovic, I., Stulic, P., & Gojceta, M. (2013). Building an IPTV VoD recommender system: An experience report. In: 12th International Conference on Telecommunications (ConTEL), 2013 (pp.155-162). IEEE.

Robayo, F., Neira, J., & Vásquez, M. (2015). Android mobile application for monitoring and recording human nutritional status implemented in a free hardware platform. Sistemas & Telemática, 13(32), 75-88. doi:10.18046/syt.v13i32.2029

Sharma, T. & Kapoor, B. (2014). Intelligent data analysis algorithms on biofeedback signals for estimating emotions. In: 2014 International Conference on Optimization, Reliabilty, and Information Technology (ICROIT), (pp. 335-340). IEEE.

Yang, Y. & Chen, H. (2011). Music emotion recognition . Boca Ratón , FL: CRC .

Descargas

Publicado

2016-10-06

Número

Sección

Investigación científica y tecnológica