Análisis de las elecciones en Colombia y Venezuela 2015 a través de análisis de sentimiento y Twitter

Autores/as

  • Sonia Ordoñez Salinas Universidad Distrital Francisco José de Caldas, Bogotá
  • Juan Manuel Pérez Trujillo Universidad Distrital Francisco José de Caldas, Bogotá
  • Romario Albeiro Sánchez Montero Universidad Distrital Francisco José de Caldas, Bogotá

DOI:

https://doi.org/10.18046/syt.v14i39.2349

Palabras clave:

Análisis de sentimiento, elecciones políticas, lenguaje natural, Twitter, Apicultor.

Resumen

Este artículo presenta un análisis de las cuentas de los principales candidatos de las elecciones regionales del 25 de octubre de 2015 en Colombia (Bogotá, Medellín y Cali) y los hashtag oficiales de los dos partidos pincipales para las elecciones parlamentarias del 6 de diciembre de 2015 en Venezuela (MUD y PSUV), con el fin de determinar las tendencias positivas o negativas y compararlas con los resultados de las respectivas elecciones. Para el desarrollo del análisis se recurrió a la técnica de análisis de sentimiento, propio de la minería de datos, y al uso de estadísticas descriptivas; se concluye que el análisis de sentimiento para la estimación de tendencias requiere de procesos que permitan controlar los retweets, si se quieren resultados aceptables.

Biografía del autor/a

  • Sonia Ordoñez Salinas, Universidad Distrital Francisco José de Caldas, Bogotá
    Ph.D. Cuenta con dos carreras de pregrado: Estadística, de la Universidad Nacional de Colombia (Bogotá); e Ingeniera de Sistemas, de la Universidad Distrital Francisco José de Caldas (Bogotá); y estudios de especialización, maestría y doctorado de la Universidad Nacional. Sonia tiene amplia experiencia profesional y en investigación en particular en: procesamiento de lenguaje natural, minería de datos, estadística, bases de datos y afines. Es Directora del Grupo de Investigación GESDATOS y docente de la Universidad Distrital.
  • Juan Manuel Pérez Trujillo, Universidad Distrital Francisco José de Caldas, Bogotá

    Estudiante de último semestre del Programa de Ingeniería de Sistemas de la Universidad Distrital Francisco José de Caldas, con énfasis en bases de datos y cibernética cualitativa. Pertenece al grupo de investigación GESDATOS de la misma universidad, desde 2015.

  • Romario Albeiro Sánchez Montero, Universidad Distrital Francisco José de Caldas, Bogotá

    Estudiante de decimo semestre del Programa de Ingeniería de Sistemas de la Universidad Distrital Francisco José de Caldas, con conocimientos en bases de datos, inteligencia artificial, cibernética cualitativa y desarrollo de software. Pertenece al grupo de investigación GESDATOS, de la misma universidad, desde el segundo semestre de 2015. 

Referencias

2015 elecciones regionales [Colombia.com]. (2015). Retrieved from: http://www.colombia.com/elecciones/2015/regionales/resultados/

Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. (2011, June). Sentiment analysis of twitter data. In Proceedings of the Workshop on Languages in Social Media (pp. 30-38). Stroudsburg PA: ACL.

Anjaria, M., & Guddeti, R. M. R. (2014). Influence factor based opinion
mining of Twitter data using supervised learning. In Communication Systems and Networks (COMSNETS), 2014 Sixth International Conference on (pp. 1–8). http://doi.org/10.1109/COMSNETS.2014.6734907

APIs Sentiment analysis (2012). Retrieved May 20, 2012, from https://store.apicultur.com/

Bermingham, A., & Smeaton, A. F. (2011). On using Twitter to monitor political sentiment and predict election results, In: Sentiment Analysis where AI meets Psychology (SAAIP) Workshop at the International Joint Conference for Natural Language Processing (IJCNLP), 13th November 2011, Chiang Mai, Thailand.

Bifet, A., & Frank, E. (2010). Sentiment knowledge discovery in Twitter streaming data. Lecture Notes in Computer Science, 6332 LNAI, 1–15. doi :10.1007/978-3-642-16184-1_1

Brown, E. (2012). Will twitter make you a better investor? A look at sentiment, user reputations and their effect on the stock market. In Proceedings of Southern Association for Information Systems (SAIS) (pp. 36.42).

Cerón-Guzmán, J. A., & León, E. (2015). Detecting social spammers in Colombia 2014 presidential election: Lecture Notes in Computer Science, 9414 - Advances in artificial intelligence and its applications, (pp. 121-141). Switzerland: Springer.

Choy, M., Cheong, M. L. F., Laik, M. N., & Shung, K. P. (2011). A sentiment analysis of Singapore Presidential Election 2011 using Twitter data with census correction. Retrieved from: https://arxiv.org/abs/1108.5520

Elecciones parlamentarias de Venezuela de 2015. Retrieved from: https://es.wikipedia.org/wiki/Elecciones_parlamentarias_de_Venezuela_de_2015

Jiang, L., Yu, M., Zhou, M., Liu, X., & Zhao, T. (2011, June). Target-dependent twitter sentiment classification. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1 (pp. 151-160). Stroudsburg PA:ACL.

Kiplinger. (2011). Market’s mood in a tweet. Kiplingers Personal Finance, (4), 14.

Liu, B. & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In Mining Text Data (pp. 415-463). US: Springer.

Liu, B. (2010). Sentiment analysis and subjectivity. In Handbook of natural language processing (2a ed.), (pp. 627-666). Boca Raton, FL: Chapman and Hall/CRC.

Mamprin, A. (2015, Oct. 21). ¿Cómo les va a los candidatos a la Alcaldía de Cali en Twitter? El País. Cali. Retrieved from: http://www.elpais.com.co/elpais/elecciones-2015/noticias/como-les-va-candidatos-alcaldia-cali-twitter

Mao, H., Counts, S., & Bollen, J. (2011). Predicting Financial Markets: Comparing Survey, News, Twitter and Search Engine Data [arXiv Preprint, 10]. Retrieved from: https://arxiv.org/abs/1112.1051

Nguyen, V. D., Varghese, B., & Barker, A. (2013). The royal birth of 2013: Analyzing and visualizing public sentiment in the UK using Twitter. In Big Data, 2013 IEEE International Conference on (pp. 46-54). doi:10.1109/BigData.2013.6691669

Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 (pp. 79-86). Stroudsburg PA: ACL.

Pasek, J. (2006). America’s youth and community engagement: How use of mass media is related to civic activity and political awareness in 14- to 22-year-olds. Communication Research, 33(3), 115-135. doi:10.1177/0093650206287073

Pla, F., & Hurtado, L. F. (2013). ELiRF-UPV en TASS-2013: análisis de sentimientos en Twitter. In XXIX Congreso de la Sociedad Española para el Procesamiento del Lenguaje Natural (SEPLN 2013). TASS (pp. 220-227).

Porshnev, A., Redkin, I., & Shevchenko, A. (2013). Machine learning in prediction of stock market indicators based on historical data and data from Twitter sentiment analysis. In 2013 IEEE 13th International Conference on Data Mining Workshops (pp. 440–444): IEEE. doi:10.1109/ICDMW.2013.111

Qureshi, P. A. R., Memon, N., Wiil, U. K., & Karampelas, P. (2011). Detecting social polarization and radicalization. International Journal of Machine Learning and Computing, 1(1), 49-57.

Razzaq, M. A., Qamar, A. M., & Bilal, H. S. M. (2014). Prediction and analysis of Pakistan election 2013 based on sentiment analysis. In Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on (pp. 700–703). doi:10.1109/ASONAM.2014.6921662

REST APIs (s.f) [Tweeter Developer Documentation blog]. Retrieved from: https://dev.twitter.com/rest/public

Selvan, L. G. S. & Moh, T. S. (2015). A framework for fast-feedback opinion mining on Twitter data streams. In Collaboration Technologies and Systems (CTS), 2015 International Conference on (pp. 314-318). doi:10.1109/CTS.2015.7210440

Stirland, S. L. (2008). Obama’s secret weapons: Internet, databases and psychology. Retrieved from: https://www.wired.com/2008/10/obamas-secret-w/

Thelwall, M., Buckley, K., & Paltoglou, G. (2011). Sentiment in Twitter events. Journal of the American Society for Information Science and Technology, 62(2), 406-418. doi:10.1002/asi.21462

Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2011). Election forecasts with Twitter: How 140 characters reflect the political landscape. Social Science Computer Review, 29(4), 402-418. doi:10.1177/0894439310386557

Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. ICWSM, 10(1), 178-185. doi:10.1074/jbc.M501708200

Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th annual meeting on Association for Computational Linguistics (pp. 417-424). Stroudsburg PA:ACL.

Wang, H., Can, D., Kazemzadeh, A., Bar, F., & Narayanan, S. (2012). A system for real-time Twitter sentiment analysis of 2012 U.S. presidential election cycle. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, (pp. 115-120). Stroudsburg, PA: ACL

Wolfram, M. S. A. (2010). Modelling the stock market using Twitter. Scotland, UK: University of Edinburgh.

Descargas

Publicado

2016-12-01

Número

Sección

Artículos de Reflexión