Algoritmos de aprendizaje automático para coordinación de interferencia inter-celda

Autores/as

  • Omar Albeiro Trejo Narváez Universidad del Cauca - Popayán
  • Víctor Fabián Miramá Pérez Universidad del Cauca, Popayán

DOI:

https://doi.org/10.18046/syt.v16i46.3034

Palabras clave:

Aprendizaje automático; auto-organización; ICIC; LTE.

Resumen

Los despliegues actuales de LTE y LTE-A requieren mayor esfuerzo para la gestión de recursos radio debido al incremento de usuarios y a la gran demanda de servicios; en ese escenario, la optimización automática es un punto clave para evitar problemas como la interferencia inter-celda. El presente trabajo recopila propuestas de algoritmos de aprendizaje automático [machine learning] enfocados en resolver este problema. Las investigaciones buscan que los sistemas celulares consigan su auto-optimización, un concepto que se enmarca dentro del área de redes auto-organizadas [Self-Organized Networks, SON], cuyo objetivo es lograr que las redes respondan de forma automática a las necesidades de los escenarios dinámicos de tráfico de red.

Biografía del autor/a

  • Omar Albeiro Trejo Narváez, Universidad del Cauca - Popayán

    Ingeniero en Electrónica y Telecomunicaciones (2008), Especialista en Redes y Servicios Telemáticos (2011) y estudiante de la Maestría en Electrónica y Telecomunicaciones de la Universidad del Cauca (Popayán, Colombia). Miembro del Grupo de Investigación Nuevas Tecnologías en Telecomunicaciones [GNTT] de la Universidad del Cauca y del Grupo de Investigación en Desarrollo Tecnológico [GIDESTEC] de la Universidad Nacional Abierta y a Distancia [UNAD]. Docente de tiempo completo en la Escuela de Ciencias Básicas Tecnología e Ingeniería de la UNAD, orienta sus labores en las áreas de electrónica y telecomunicaciones, específicamente en gestión de redes telemáticas, redes de nueva generación y laboratorios del área de circuitos eléctricos.

  • Víctor Fabián Miramá Pérez, Universidad del Cauca, Popayán

    Ingeniero en Electrónica y Telecomunicaciones (2008) y Magister en Electrónica y Telecomunicaciones (2013) de la Universidad del Cauca (Popayán, Colombia). Es docente del Departamento de Telecomunicaciones e investigador en el Grupo de Investigación Nuevas Tecnologías en Telecomunicaciones [GNTT] y del Grupo de Radio e Inalámbricas [Grial] de la Universidad del Cauca. Orienta sus labores de docencia e investigación en las áreas de comunicaciones móviles e inalámbricas.

Referencias

3GPP. (2014). 3GPP work items on Self-Organizing Networks v0.1.3 (Release 8). 3GPP.

5GAmericas. (2013). Self-optimizing networks: The benefits of SON in LTE. Retrieved from: http://www.5gamericas.org/files/7714/0759/1264/Self-Optimizing_Networks-Benefits_of_SON_in_LTE_10.7.13.pdf

Abusaid, O. & Salem, F. (2017). Self-organizing techniques to resource block scheduling in LTE-A communication systems. Engineering and Technology (ICET), 2017 International Conference on (pp. 1-6). Antalya: IEEE. doi:10.1109/ICEngTechnol.2017.8308183

Barranco, R. (2012, June 18). IBM. Retrieved from: https://www.ibm.com/developerworks/ssa/local/im/que-es-big-data/que-es-big-data-pdf.pdf

Behjati, M. (2014). Self-organizing interference coordination for future LTE-advanced network QoS improvements. In Broadband Multimedia Systems and Broadcasting (BMSB), 2014 IEEE International Symposium on. Dublin. doi:10.1109/BMSB.2014.6873493

Bojović, B., Meshkova, E., Baldo, N., Riihijärvi, J., & Petrova, M. (2016). Machine learning-based dynamic frequency and bandwidth allocation in self-organized LTE dense small cell deployments. Eurasip Journal on Wireless Communication Network, 143. doi: 10.1186/s13638-016-0679-0

Borkar, S., & Pande, H. (2016). Application of 5G next generation network to Internet of Things. Internet of Things and Applications (IOTA), International Conference on. Pune. IEEE. doi:10.1109/IOTA.2016.7562769

Budihal, V., Sandhya, R., Siddamal, S., & Banakar, R. M. (2016). Framework for intercell interference avoidance in MIMO OFDMA system. Wireless Communications, Signal Processing and Networking (WiSPNET), International Conference on (pp. 1626-1630). Chennai: IEEE.

Cordina, M., & Debono, C. J. (2017). A support vector machine based sub-band CQI feedback compression scheme for 3GPP LTE systems. Wireless Communication Systems (ISWCS), 2017 International Symposium on (pp. 325-330). Bologna. IEEE.

Daeinabi, A., & Sandrasegaran, K. (2015). A Fuzzy Q-Learning Approach for Enhanced Intercell Interference Coordination in LTE-Advanced Heterogeneous Networks. Communications (APCC), 2014 Asia-Pacific Conference on (pp. 139-144). Pattaya. IEEE.
Daeinabi, A., &Sandrasegaran, K. (2014). Networks: A fuzzy Q-learning approach for enhanced intercell interference coordination in LTE-Advanced heterogeneous. Communications (APCC), 2014 Asia-Pacific Conference on (pp. 139-144). Pattaya. IEEE.

Dai, K., & Hiroyuky, S. (2012). Intercell interference coordination (ICIC) Technology. Fujitsu Sci. Tech., 48(1), 89-94.

Deb, S. (2014). Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets. IEEE/ACM Transactions on Networking, 22(1), 137-150.

Eberle, A. (2015, Mach 15). Markov processes. Retrieved from: http://wt.iam.uni-bonn.de/fileadmin/WT/Inhalt/people/Andreas_Eberle/MarkovProcesses/MPSkript1415.pdf

ETSI TS 136 423 V11.2.0. (2018, April). Retrieved from: http://www.etsi.org/deliver/etsi_ts/136400_136499/136423/11.02.00_60/ts_136423v110200p.pdf

Feng, S. (2008). Self-organizing networks (SON) in 3GPP long term evolution. Munich, Germany: Nomor Research.

Fernández, B., González, L., & Hernández, C. (2014). Impacto del reuso de frecuencia fraccional en la reducción de interferencia intercelda en LTE. Revista de Investigaciones, 25(1), 28-39.

Gadam, M., Ahmed, M. A., & Kyun, C. (2016). Wireless personal communications: A review of adaptive cell selection techniques in LTE-advanced HetNets. Journal of Computer Networks and Communications, 2016, Art.3. doi:10.1155/2016/7394136

Galindo-Serrano, A., & Giupponi, L. (2013). Self-organized femto-to-macro interference coordination with partial information. Personal, Indoor and Mobile Radio Communications (PIMRC Workshops), 2013 IEEE 24th International Symposium on (pp. 111-116). London. IEEE.

Gao, C., Chen, X., & Li, L. (2014). An I-FFR algorithm for interference coordination in twin-layer femtocell networks. In Game Theory for Networks (GAMENETS), 2014 5th International Conference on. Beijing: IEEE. doi:10.1109/GAMENETS.2014.7043724

Glenn, O., Imran, A., & Evans, M. I. (2013). A Survey of Self Organization in Future Cellular Networks. IEEE Communications Surveys & Tutorials, 15(1), 336-361.

Guio, I. & Hernández, M. Á. (2013). Gestión de recursos radio en redes móviles celulares basadas en tecnología OFDMA para la provisión de QoS y control de la interferencia [tesis]. Universidad de Zaragoza: España.

Hajjar, M., Aldabbagh, G., & Dimitriou, N. (2015). Using clustering techniques to improve capacity of LTE networks. Communications (APCC), 2015 21st Asia-Pacific Conference on (pp. 68-73). Kyoto. IEEE.

Hamza, A., Khalifa, S., & Hamza, H. (2013). A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks. IEEE Communications Surveys & Tutorials, 15(4), 1642-1670.

Hinton, G., Srivastava, N., & Swersky, K. (2014, April). Neural networks for machine learning - Lecture 1A [slides]. Retrieved from: https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec1.pdf

Hu, T., & Pang, J. (2012). LTE-Advanced heterogeneous networks: Release 10 and beyond. In Communications (ICC), 2012 IEEE International Conference on. Ottawa. IEEE. doi:10.1109/ICC.2012.6364785.

Jain, S. (July 31). Introduction to genetic algorithm & their application in data science. Retrieved from: https://www.analyticsvidhya.com/blog/2017/07/introduction-to-genetic-algorithm/

Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K.-C., & Hanzo, L. (2017). Machine learning paradigms for next-generation wireless networks. IEEE Wireless Communications, 24(2), 98 - 105.

Kashaf, A., Tiwana, M. I., & Usman, I. (2017). Self-organizing inter-cell interference coordination in 4G and beyond networks using genetic algorithms. Automatika, 58(1), 48-54.

Keysight Technologies (2018, April). LTE physical layer overview. Retrieved from: http://rfmw.em.keysight.com/wireless/helpfiles/89600b/webhelp/subsystems/lte/content/lte_overview.htm

Kibria, M. G., Villardi, G. P., & Nguyen, K. (2016). Heterogeneous Networks in Shared Spectrum Access Communications. IEEE Journal on Selected Areas in Communications, 35(1), 45-58.

Klaine, P., Imra, M., Onireti, O., & Souza, R. (2017). A survey of machine learning techniques applied to self-organizing cellular networks. IEEE Communications Surveys & Tutorials, 19(4), 2392-2431.

Kumar, D., Kanagaraj, N. N., & Srilakshmi, R. (2013, April). Harmonized Q-learning for radio resource management in LTE based networks. In ITU Kaleidoscope: Building Sustainable Communities (K-2013), 2013 Proceedings of (pp. 1-8). IEEE.

Li, H., Liang, Z., & Ascheid, G. (2016). Artificial neural network aided dynamic scheduling for eICIC in LTE HetNets. In Signal Processing Advances in Wireless Communications (SPAWC), 2016 IEEE 17th International Workshop on (pp. 1-5). Edinburgh: IEEE. doi:10.1109/SPAWC.2016.7536877

Li, L., Peng, M., Yan, Z., Zhao, Z., & Li, Y. (2016). Success coverage probability for dynamic resource allocation in small cell networks. In IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1-5). Doha. IEEE. doi:10.1109/WCNC.2016.7565150

Madariaga, D. F., Rodríguez, J. L., Lozano, M. R., & Vallejo, E. C. (2013). Inferencia estadística: módulo de regresión lineal simple. Documentos de Investigación, 147. Retrieved from: http://www.urosario.edu.co/Administracion/documentos/Documentos-de-Investigacion/BI_147-Web.pdf

Ming, C., Ye, H., & Xinyu, G. (2017). A self-organizing resource allocation strategy based on Q-learning approach in ultra-dense networks. In Network Infrastructure and Digital Content (IC-NIDC), 2016 IEEE International Conference on (pp. 155-160). Beijing. IEEE.

Miramá, V., & Quintero, V. (2016). Control de potencia basado en teoría de juegos en sistemas de comunicaciones inalámbricas. Gerencia Tecnológica Informática, 15(42), 69-78.

Mohamed, A., & Abd-Elnaby, M. (2016). Self-organised dynamic resource allocation scheme using enhanced fractional frequency reuse in long term evolution-advanced relay-based networks. IET Communications, 10(10), 1163-1174.

Morel, M.-L. A., & Randriamasy, S. (2017). Quality of experience-aware enhanced inter-cell interference coordination for self organized HetNet. In Wireless and Mobile Networking Conference (WMNC), 2017 10th IFIP (pp. 1-8). Valencia. IEEE. doi:10.1109/WMNC.2017.8248841

Morozs, N., Clarke, T., & Grace, D. (2015). Distributed heuristically accelerated q-learning for robust cognitive spectrum management in LTE cellular systems. IEEE Transactions on Mobile Computing, 15(4), 817-825.

Moysen, J., Giupponi, L., Carl, A., & Gauss, F. (2014). A reinforcement learning based solution for self-healing in LTE networks. In 2014 IEEE Vehicular Technology Conference (VTC Fall). Vancouver. IEEE. doi:10.1109/VTCFall.2014.6965842
ns-3 (2011). ns-3 A discrete-event network simulator. Retrieved from: https://www.nsnam.org/docs/models/html/lte-design.html

Qi, W., Zhang, B., Chen, B., & Zhang, J. (2018). A user-based K-means clustering offloading algorithm for heterogeneous network. In 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV (pp. 307-312). IEEE.

Rayón, A. (2017, April). Guía para comenzar con algoritmos de machine learning. Retrieved from: https://blogs.deusto.es/bigdata/guia-para-comenzar-con-algoritmos-de-machine-learning/

Razavi, R., Klein, S., & Claussen, H. (2010). Self-optimization of capacity and coverage in LTE networks using a fuzzy reinforcement learning approach. In Personal Indoor and Mobile Radio Communications (PIMRC), 2010 IEEE 21st International Symposium on. Instanbul. IEEE. doi:10.1109/PIMRC.2010.5671622

Shanthamallu, U., Spanias, A., Tepedelenlioglu, C., & Stanley, M. (2017). A brief survey of machine learning methods and their sensor and IoT applications. In Information, Intelligence, Systems & Applications (IISA), 2017 8th International Conference on (pp. 1-8). Larnaca, Cyprus. IEEE. doi:10.1109/IISA.2017.8316459

Sierra, C. A. & Marca, J. R. (2015). Load balancing in self-organized heterogeneous LTE networks: A statistical learning approach. 2015 7th IEEE Latin-American Conference on Communications (LATINCOM). Arequipa. IEEE. doi:10.1109/LATINCOM.2015.7430131

Supratim D. & Monogioudis, P. (2015). Learning-based uplink interference management in 4G LTE cellular systems. IEEE-ACM Transactions on Networking, 23(2), 398 - 411.

Thilina, K. M., Choi, K. W., Saquib, N., & Hossain, E. (2013). Machine learning techniques for cooperative spectrum sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(11), 2209-2221

Trabelsi, N., Chen, C. S., Azouzi, R. E., Roullet, L., & Altman, E. (Junio de 2017). User association and resource allocation optimization in LTE cellular networks. IEEE Transactions on Network and Service Management, 14(2), 429-440.

Van den Berg, J. L., Litjens, R., Eisenblätter, A., Amirijoo, M., Linnell, O., Blondia, C., ... & Schmelz, L. C. (2008). Self-organisation in future mobile communication networks. In Proceedings of ICT-Mobile Summit 2008, Stockholm, Sweden, 2008. Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.3075&rep=rep1&type=pdf

Xie, Z. (2009). Enhanced fractional frequency reuse to increase capacity of OFDMA Systems. Proceedings of the 3rd international conference on New technologies, mobility and security, NTMS. Cairo, Egypt: IEEE. doi:10.1109/NTMS.2009.5384757

Descargas

Publicado

2018-07-06