Redes de área corporal. Una perspectiva al futuro desde la investigación
DOI:
https://doi.org/10.18046/syt.v9i16.1027Palavras-chave:
Canales, redes de área personal, aplicaciones móviles, biónica.Resumo
Actualmente, las redes de área corporal (Body Area Network) han logrado una especial relevancia, en particular por las tendencias que muestran su uso en la medicina, en aplicaciones de monitoreo y emergencia. Han surgido nuevos esquemas regulatorios y de estandarización, que han permitido la creación de nuevos estándares de comunicaciones, tales como Bluetooth, ZigBee, Ultra Wide Band (UWB), ECMA368, WiFi, GPRS, LTE, entre otros que tratan de dar soluciones a distintos retos y necesidades que surgen a medida que se incorporan estas tecnologías al estilo de vida. Este documento presenta el estado actual de las redes de área corporal desde una perspectiva de la investigación, que incluye un estado general de la regulación y estandarización de las redes de área corporal, la descripción de las aplicaciones y tendencias investigativas, y el posible futuro que enmarcan las comunicaciones de área personal.Referências
[1] Betancur, Leonardo Cardona, Narcis Navarro, Andres Traver, Lara (2009), A statistical channel model for on body Area networks in Ultra Wide Band Communications. LATINCOM. IEEE Latin-American Conference on Communications. ISBN: 978-1-4244-4387-1 pp. 1 - 6.
[2] Cassidy, A.; Zhang, Z. Andreou, A. (2008) Impulse Radio Address Event Interconnects for body area networks and neural prostheses. Argentine School of Micro-Nanoelectronics: Technology and Applications, pp. 87-92
[3] Chang, W.; Tarng, J. Peng, S. (2008) Frequency-Space-Polarization on UWB MIMO Performance for Body Area Network Applications. IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 577-580
[4] Chao, Y. and Scholtz, R. A. (2005) Ultra-wideband Transmitted Reference Systems, IEEE Trans. Veh. Technol., vol. 54, pp. 1556-1569.
[5] Chen, Y. and Beaulieu, N. (2007) SNR estimation methods for UWB systems, IEEE Transactions on Wireless Communications, vol. 6, no. 10, pp. 3836-3845
[6] Chen, Y.; Teo, J.; Lai, J.; Gunawan, E.; Low, K. S.; Soh, C. B. Rapajic, P. (2009) Cooperative Communications in Ultra-Wideband Wireless Body Area Networks: Channel Modeling and System Diversity Analysis. IEEE Journal on Selected Areas in Communications, vol. 27, pp. 5-16
[7] Chong, C.-C. and Yong, S. (2005) A generic statistical-based UWB channel model for high-rise apartments, IEEE Transactions on Antennas and Propagation, vol. 53, no. 8, pp. 2389-2399.
[8] D’Errico, R. Ouvry, L. (2009) Time-variant BAN channel characterization. COST 2100. CEA-LETI. TD(09)879.
[9] Domenicali, D. Benedetto, M. D. (2007). Performance Analysis for a Body Area Network composed of IEEE 802.15.4a devices. 4th Workshop on Positioning, Navigation and Communication. WPNC, pp. 273-276
[10] Federal Communications Commission, USA. (2002) Revision of Part 15 of the commission’s rules regarding ultra-wideband transmission systems, first report and order. s.l. : ET-Docket.
[11] Fort, A.; Ryckaert, J.; Desset, C.; Doncker, P. D.; Wambacq, P. Biesen, L. V. (2006) Ultra-wideband channel model for communication around the human body IEEE Journal on Selected Areas in Communications, vol. 24, pp. 927-933
[12] Goeckel, D. and Zhang, Q. (2007) Slightly Frequency-Shifted Reference Ultra-Wideband (UWB) Radio, IEEE Trans. Commun., vol. 55, no. 3, pp.508-519.
[13] Gorce, J. M.; Goursaud, C.; Savigny, C. Villemaud, G. (2009) Cooperation mechanisms in BANs COST 2100. University of Lyon, TD(09)862.
[14] Goulianos, A. A. Stavrou, S (2007). UWB Path Arrival Times in Body Area Networks IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 223-226
[15] Gray, R. M. and Davisson, L. D. (2005) An Introduction to Statistical Signal Processing. Cambridge University Press.
[16] Gupta, A. Abhayapala, T. D. (2008) Body Area Networks: Radio channel modelling and propagation characteristics. Australian Communications Theory Workshop. AusCTW, pp. 58-63
[17] Hardle, W. and Simar, L. (2003) Applied multivariate statistical analysis. Metrika.
[18] Heavens, O. S. (1965) Optical Properties of Thin Film Solids. New York, Dover.
[19] (October 2009) IEEE 802.15 WPAN Task Group 6 (TG6): Body Area Networks, IEEE standarization working Group, http://www.ieee802.org/15/pub/TG6.html
[20] Jianqi, T.; Chan, S. W.; Chen, Y.; Gunawan, E.; Low, K. S. Soh, C. B.(2007) Time domain measurements for UWB on-body radio propagation. IEEE Antennas and Propagation Society International Symposium, pp. 325-328
[21] Jurik, A. D. Weaver, A. C. (2008) Remote Medical Monitoring Computer, pp. 96-99
[22] Katayama, N.; Takizawa, K.; Aoyagi, T.; Takada, J.; Li, H. Kohno, R. (2008) Channel model on various frequency bands for wearable Body Area Network. First International Symposium on Applied Sciences on Biomedical and Communication Technologies. ISABEL, pp. 1-5
[23] Kovacs, I.; Pedersen, G.; Eggers, P. Olesen, K. (2004) Ultra wideband radio propagation in body area network scenarios. IEEE Eighth International Symposium on Spread Spectrum Techniques and Applications, pp.102-106
[24] Li, H.; Takizawa, K. I.; Zheri, B. Kohno, R. (2007) Body Area Network and Its Standardization at IEEE 802.15.MBAN. 16th IST Mobile and Wireless Communications Summit, vol. 1, pp. 1-5
[25] Liu, L.; Doncker, P. D. Oestges, C. (2008) Fading Correlation Measurement and Modeling on the Front and Back side of a Human Body. COST 2100, UCL and UBL, TD(08)642.
[26] Manzoor, R. Majavu, W. Jeoti, V. Kamel, N. and Asif, M. (2007) Front-end estimation of noise power and SNR in OFDM systems, in International Conference on Intelligent and Advanced Systems. ICIAS, pp. 435-439.
[27] Molisch, A. F. ; Balakrishnan, K. ; Cassioli, D.; Chong, C.-C.; Emami, S.; Fort, A.; Karedal, J.; Kunisch, J.; Schantz, H. and Siwiak, U. S. K. (2004) IEEE 802.15.4a channel model- final report, IEEE 802.15.4a.
[28] Molisch, A. (2005) Ultrawideband propagation channels-theory, measurement, and modeling, IEEE Transactions on Vehicular Technology, vol. 54, pp. 1528-1545
[29] Motani, M.; Yap, K.; Natarajan, A.; de Silva, B.; Hu, S. Chua, K. C. (2007) Network Characteristics of Urban Environments for Wireless BAN. IEEE Biomedical Circuits and Systems Conference. BIOCAS, vol.1, pp.179-182
[30] Monton, E.; Hernandez, J. F.; Blasco, J. M.; Herve, T.; Micallef, J.; Grech, I.; Brincat, A. Traver, V. (2008) Body area network for wireless patient monitoring. IET Communications, vol. 2, pp. 215-222
[31] Oliveira, C.; Pedrosa, L. Rocha, R. M. (2008) Characterizing On-Body Wireless Sensor Networks New Technologies, Mobility and Security. NTMS, pp. 1-6
[32] Olugbara, O.; Adigun, M.; Ojo, S. Mudali, P. (2007) Utility Gris Computing and Body Area Network as Enabler for Ubiquitous Rural e-Healthcare Service Provisioning 9th International Conference on e-Health Networking, Application and Services, pp. 202-207
[33] Ohno, K.; Watanabe, K.; Yamada, T.; Kobayashi, T.; Matsuda, H.; Yamazaki, N. Ikegami, T. (2008) Wideband Measurement for Body Effect of BAN Channel IEEE 10th International Symposium on Spread Spectrum Techniques and Applications. ISSSTA, pp. 292-296
[34] Rappaport, T. (1996) Wireless Communications: Principles and Practice, 1st ed. Prentice Hall.
[35] Reddy, P. Ganapathy, V. (2008) Performance of multi user detector based receivers for UWB body area Networks. 10th International Conference on e-health Networking, Applications and Services. HealthCom, pp. 227-231
[36] Roy, S. V.; Oestges, C.; Horlin, F. Doncker, P. D. (2007) Ultra-Wideband Spatial Channel Characterization for Body Area Networks The Second European Conference on Antennas and Propagation, EuCAP, pp. 1-5
[37] Ruiz, J.; Xu, J. Shimamoto, S. (2006) Propagation characteristics of intra-body communications for body area networks Consumer Communications and Networking Conference, CCNC 2006. 3rd IEEE, vol. 1, pp. 509-513
[38] Saleh, A. and Valenzuela, R. (1987) A statistical model for indoor multipath propagation, IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128-137.
[39] Simic, D.; Jordan, A.; Tao, R.; Gungl, N.; Simic, J.; Lang, M.; Ngo, L. V. Brankovic, V. (2007) Impulse UWB Radio System Architecture for Body Area Networks 16th IST Mobile and Wireless Communications Summit, pp. 1-5
[40] Smulders, P. (2009) Statistical Characterization of 60-GHz Indoor Radio Channels, Antennas and Propagation, IEEE Transactions on, vol. 57,pp. 2820-2829
[41] Socheleau, F.-X. Aissa-El-Bey, A. and Houcke, S. (2008) Non dataaided SNR estimation of OFDM signals, IEEE Communications Letters, vol. 12, no. 11, pp. 813-815.
[42] Takada, J.; Aoyagi, T.; Takizawa, K.; Katayama, N.; Kobayashi, T.; Yazdandoost, K. Y.; Li, H. Kohno, R. (2008) Static Propagation and Channel Models in Body Area. COST 2100, U. Tokyo, TD(08)639
[43] Tayamachi, T.; Wang, Q. Wang, J. (2007) Transmission Characteristic Analysis for UWB Body Area Communications. International Symposium on Electromagnetic Compatibility, EMC, pp. 75-78
[44] Tesi, R; Taparugssanagorn, A.; H¨am¨al¨ainen, M.; Liu, Iinatti, J. (2008) UWB Channel Measurements for Wireless Body Area Networks. COST 2100, Oulu Finland, TD(08)649
[45] Timmons, N. Scanlon, W. (2004) Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking. First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks. SECON, pp. 16-24
[46] Thompson, W.; Walker, K.; Cepeda, R.; Beach, M. A. Armour, S. (2008) Ultra-Wideband Body Area Network Channel Measurement and Analysis using Textile Antennas COST 2100, Bristol Toshiba, TD(08)629
[47] Watanabe, K.; Hari, S.; Ohnol, K. Ikegami, T. (2008) Experiments on Shadow Effects of Body and Effective Paths for UWB Transmission in BAN. International Symposium on Communications and Information Technologies. ISCIT, pp. 232-237
[48] Xu, H. Yang, L. (2008) Ultra-wideband technology: Yesterday, today, and tomorrow IEEE Radio and Wireless Symposium, pp. 715-718
[49] Yazdandoost, K. Y. Kohno, R. (2009) An Antenna for Medical Implant Communications System COST 2100. Medical ICT Institute, National Institute of Information and Communications Technology. New Generation Wireless Communications Research Center. TD(09)808.
[50] Yoo, H. Cho, N. (2008) Body channel communication for low energy BSN/BAN. IEEE Asia Pacific Conference on Circuits and Systems. APCCAS, pp. 7-11
[51] Zasowski, T. Wittneben, A. (2009) Performance of UWB Receivers with Partial CSI Using a Simple Body Area Network Channel Model. IEEE Journal on Selected Areas in Communications, vol. 27, pp. 17-26
[52] Zasowski, T.; Meyer, G.; Althaus, F. Wittneben, A. (2006) UWB signal propagation at the human head. IEEE Transactions on Microwave Theory and Techniques, vol. 54, pp.1836-1845
[53] Zasowski, T.; Althaus, F.; Stager, M.; Wittneben, A. Troster, G. (2003) UWB for noninvasive wireless body area networks: channel measurements and results. IEEE Conference on Ultra Wideband Systems and Technologies, vol 1, pp. 285-289
[54] Zimmerman, T. G. (1995) Personal Area Networks (PAN): Near-Field Intra Body Communication. M.S. Thesis, Media Laboratory, MIT, USA.
[2] Cassidy, A.; Zhang, Z. Andreou, A. (2008) Impulse Radio Address Event Interconnects for body area networks and neural prostheses. Argentine School of Micro-Nanoelectronics: Technology and Applications, pp. 87-92
[3] Chang, W.; Tarng, J. Peng, S. (2008) Frequency-Space-Polarization on UWB MIMO Performance for Body Area Network Applications. IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 577-580
[4] Chao, Y. and Scholtz, R. A. (2005) Ultra-wideband Transmitted Reference Systems, IEEE Trans. Veh. Technol., vol. 54, pp. 1556-1569.
[5] Chen, Y. and Beaulieu, N. (2007) SNR estimation methods for UWB systems, IEEE Transactions on Wireless Communications, vol. 6, no. 10, pp. 3836-3845
[6] Chen, Y.; Teo, J.; Lai, J.; Gunawan, E.; Low, K. S.; Soh, C. B. Rapajic, P. (2009) Cooperative Communications in Ultra-Wideband Wireless Body Area Networks: Channel Modeling and System Diversity Analysis. IEEE Journal on Selected Areas in Communications, vol. 27, pp. 5-16
[7] Chong, C.-C. and Yong, S. (2005) A generic statistical-based UWB channel model for high-rise apartments, IEEE Transactions on Antennas and Propagation, vol. 53, no. 8, pp. 2389-2399.
[8] D’Errico, R. Ouvry, L. (2009) Time-variant BAN channel characterization. COST 2100. CEA-LETI. TD(09)879.
[9] Domenicali, D. Benedetto, M. D. (2007). Performance Analysis for a Body Area Network composed of IEEE 802.15.4a devices. 4th Workshop on Positioning, Navigation and Communication. WPNC, pp. 273-276
[10] Federal Communications Commission, USA. (2002) Revision of Part 15 of the commission’s rules regarding ultra-wideband transmission systems, first report and order. s.l. : ET-Docket.
[11] Fort, A.; Ryckaert, J.; Desset, C.; Doncker, P. D.; Wambacq, P. Biesen, L. V. (2006) Ultra-wideband channel model for communication around the human body IEEE Journal on Selected Areas in Communications, vol. 24, pp. 927-933
[12] Goeckel, D. and Zhang, Q. (2007) Slightly Frequency-Shifted Reference Ultra-Wideband (UWB) Radio, IEEE Trans. Commun., vol. 55, no. 3, pp.508-519.
[13] Gorce, J. M.; Goursaud, C.; Savigny, C. Villemaud, G. (2009) Cooperation mechanisms in BANs COST 2100. University of Lyon, TD(09)862.
[14] Goulianos, A. A. Stavrou, S (2007). UWB Path Arrival Times in Body Area Networks IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 223-226
[15] Gray, R. M. and Davisson, L. D. (2005) An Introduction to Statistical Signal Processing. Cambridge University Press.
[16] Gupta, A. Abhayapala, T. D. (2008) Body Area Networks: Radio channel modelling and propagation characteristics. Australian Communications Theory Workshop. AusCTW, pp. 58-63
[17] Hardle, W. and Simar, L. (2003) Applied multivariate statistical analysis. Metrika.
[18] Heavens, O. S. (1965) Optical Properties of Thin Film Solids. New York, Dover.
[19] (October 2009) IEEE 802.15 WPAN Task Group 6 (TG6): Body Area Networks, IEEE standarization working Group, http://www.ieee802.org/15/pub/TG6.html
[20] Jianqi, T.; Chan, S. W.; Chen, Y.; Gunawan, E.; Low, K. S. Soh, C. B.(2007) Time domain measurements for UWB on-body radio propagation. IEEE Antennas and Propagation Society International Symposium, pp. 325-328
[21] Jurik, A. D. Weaver, A. C. (2008) Remote Medical Monitoring Computer, pp. 96-99
[22] Katayama, N.; Takizawa, K.; Aoyagi, T.; Takada, J.; Li, H. Kohno, R. (2008) Channel model on various frequency bands for wearable Body Area Network. First International Symposium on Applied Sciences on Biomedical and Communication Technologies. ISABEL, pp. 1-5
[23] Kovacs, I.; Pedersen, G.; Eggers, P. Olesen, K. (2004) Ultra wideband radio propagation in body area network scenarios. IEEE Eighth International Symposium on Spread Spectrum Techniques and Applications, pp.102-106
[24] Li, H.; Takizawa, K. I.; Zheri, B. Kohno, R. (2007) Body Area Network and Its Standardization at IEEE 802.15.MBAN. 16th IST Mobile and Wireless Communications Summit, vol. 1, pp. 1-5
[25] Liu, L.; Doncker, P. D. Oestges, C. (2008) Fading Correlation Measurement and Modeling on the Front and Back side of a Human Body. COST 2100, UCL and UBL, TD(08)642.
[26] Manzoor, R. Majavu, W. Jeoti, V. Kamel, N. and Asif, M. (2007) Front-end estimation of noise power and SNR in OFDM systems, in International Conference on Intelligent and Advanced Systems. ICIAS, pp. 435-439.
[27] Molisch, A. F. ; Balakrishnan, K. ; Cassioli, D.; Chong, C.-C.; Emami, S.; Fort, A.; Karedal, J.; Kunisch, J.; Schantz, H. and Siwiak, U. S. K. (2004) IEEE 802.15.4a channel model- final report, IEEE 802.15.4a.
[28] Molisch, A. (2005) Ultrawideband propagation channels-theory, measurement, and modeling, IEEE Transactions on Vehicular Technology, vol. 54, pp. 1528-1545
[29] Motani, M.; Yap, K.; Natarajan, A.; de Silva, B.; Hu, S. Chua, K. C. (2007) Network Characteristics of Urban Environments for Wireless BAN. IEEE Biomedical Circuits and Systems Conference. BIOCAS, vol.1, pp.179-182
[30] Monton, E.; Hernandez, J. F.; Blasco, J. M.; Herve, T.; Micallef, J.; Grech, I.; Brincat, A. Traver, V. (2008) Body area network for wireless patient monitoring. IET Communications, vol. 2, pp. 215-222
[31] Oliveira, C.; Pedrosa, L. Rocha, R. M. (2008) Characterizing On-Body Wireless Sensor Networks New Technologies, Mobility and Security. NTMS, pp. 1-6
[32] Olugbara, O.; Adigun, M.; Ojo, S. Mudali, P. (2007) Utility Gris Computing and Body Area Network as Enabler for Ubiquitous Rural e-Healthcare Service Provisioning 9th International Conference on e-Health Networking, Application and Services, pp. 202-207
[33] Ohno, K.; Watanabe, K.; Yamada, T.; Kobayashi, T.; Matsuda, H.; Yamazaki, N. Ikegami, T. (2008) Wideband Measurement for Body Effect of BAN Channel IEEE 10th International Symposium on Spread Spectrum Techniques and Applications. ISSSTA, pp. 292-296
[34] Rappaport, T. (1996) Wireless Communications: Principles and Practice, 1st ed. Prentice Hall.
[35] Reddy, P. Ganapathy, V. (2008) Performance of multi user detector based receivers for UWB body area Networks. 10th International Conference on e-health Networking, Applications and Services. HealthCom, pp. 227-231
[36] Roy, S. V.; Oestges, C.; Horlin, F. Doncker, P. D. (2007) Ultra-Wideband Spatial Channel Characterization for Body Area Networks The Second European Conference on Antennas and Propagation, EuCAP, pp. 1-5
[37] Ruiz, J.; Xu, J. Shimamoto, S. (2006) Propagation characteristics of intra-body communications for body area networks Consumer Communications and Networking Conference, CCNC 2006. 3rd IEEE, vol. 1, pp. 509-513
[38] Saleh, A. and Valenzuela, R. (1987) A statistical model for indoor multipath propagation, IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128-137.
[39] Simic, D.; Jordan, A.; Tao, R.; Gungl, N.; Simic, J.; Lang, M.; Ngo, L. V. Brankovic, V. (2007) Impulse UWB Radio System Architecture for Body Area Networks 16th IST Mobile and Wireless Communications Summit, pp. 1-5
[40] Smulders, P. (2009) Statistical Characterization of 60-GHz Indoor Radio Channels, Antennas and Propagation, IEEE Transactions on, vol. 57,pp. 2820-2829
[41] Socheleau, F.-X. Aissa-El-Bey, A. and Houcke, S. (2008) Non dataaided SNR estimation of OFDM signals, IEEE Communications Letters, vol. 12, no. 11, pp. 813-815.
[42] Takada, J.; Aoyagi, T.; Takizawa, K.; Katayama, N.; Kobayashi, T.; Yazdandoost, K. Y.; Li, H. Kohno, R. (2008) Static Propagation and Channel Models in Body Area. COST 2100, U. Tokyo, TD(08)639
[43] Tayamachi, T.; Wang, Q. Wang, J. (2007) Transmission Characteristic Analysis for UWB Body Area Communications. International Symposium on Electromagnetic Compatibility, EMC, pp. 75-78
[44] Tesi, R; Taparugssanagorn, A.; H¨am¨al¨ainen, M.; Liu, Iinatti, J. (2008) UWB Channel Measurements for Wireless Body Area Networks. COST 2100, Oulu Finland, TD(08)649
[45] Timmons, N. Scanlon, W. (2004) Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking. First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks. SECON, pp. 16-24
[46] Thompson, W.; Walker, K.; Cepeda, R.; Beach, M. A. Armour, S. (2008) Ultra-Wideband Body Area Network Channel Measurement and Analysis using Textile Antennas COST 2100, Bristol Toshiba, TD(08)629
[47] Watanabe, K.; Hari, S.; Ohnol, K. Ikegami, T. (2008) Experiments on Shadow Effects of Body and Effective Paths for UWB Transmission in BAN. International Symposium on Communications and Information Technologies. ISCIT, pp. 232-237
[48] Xu, H. Yang, L. (2008) Ultra-wideband technology: Yesterday, today, and tomorrow IEEE Radio and Wireless Symposium, pp. 715-718
[49] Yazdandoost, K. Y. Kohno, R. (2009) An Antenna for Medical Implant Communications System COST 2100. Medical ICT Institute, National Institute of Information and Communications Technology. New Generation Wireless Communications Research Center. TD(09)808.
[50] Yoo, H. Cho, N. (2008) Body channel communication for low energy BSN/BAN. IEEE Asia Pacific Conference on Circuits and Systems. APCCAS, pp. 7-11
[51] Zasowski, T. Wittneben, A. (2009) Performance of UWB Receivers with Partial CSI Using a Simple Body Area Network Channel Model. IEEE Journal on Selected Areas in Communications, vol. 27, pp. 17-26
[52] Zasowski, T.; Meyer, G.; Althaus, F. Wittneben, A. (2006) UWB signal propagation at the human head. IEEE Transactions on Microwave Theory and Techniques, vol. 54, pp.1836-1845
[53] Zasowski, T.; Althaus, F.; Stager, M.; Wittneben, A. Troster, G. (2003) UWB for noninvasive wireless body area networks: channel measurements and results. IEEE Conference on Ultra Wideband Systems and Technologies, vol 1, pp. 285-289
[54] Zimmerman, T. G. (1995) Personal Area Networks (PAN): Near-Field Intra Body Communication. M.S. Thesis, Media Laboratory, MIT, USA.
Downloads
Publicado
2011-03-01
Edição
Seção
Reviews
Licença
Esta publicação está licenciada sob os termos da licença CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.pt_BR).