Priorización de herramientas de manufactura liviana usando GAP análisis y proceso analítico en red [ANP]

Autores

  • Hung-da Wan University of Texas at San Antonio
  • Aniket Mohan Sahasrabudhe University of Texas at San Antonio
  • Leonardo Rivera Universidad Icesi

DOI:

https://doi.org/10.18046/syt.v12i28.1746

Palavras-chave:

Manufactura Lean, proceso analítico en red, proceso analítico jerárquico, lista priorizada de herramientas lean.

Resumo

La toma de decisiones puede ser un proceso complejo, especialmente cuando se debe considerar una gran cantidad de factores. En el caso de las compañías que usan Lean Manufacturing, la gran variedad de herramientas hace aún más complejo seleccionar: la herramienta correcta, para el sistema correcto, en el tiempo correcto. Este artículo propone un enfoque sistemático de apoyo el proceso de toma de decisiones, en dos pasos: en el primero, se lleva a cabo un análisis Gap, con el fin de comparar el estado actual de un sistema con una benchmark, y así identificar deficiencias en el desempeño en varias categorías; en el segundo paso, empleando el concepto de Análisis y proceso analítico en red [ANP], se priorizan herramientas lean en la evaluación de las necesidades y la determinación del nivel de urgencia de las mejoras. Usando ANP se establecen prioridades en una lista de herramientas lean, cuya implementación ser requiere con urgencia, considerando el estado actual de una empresa manufacturera. Un caso de estudio hipotético se utiliza para demostrar que el enfoque propuesto es capaz de seleccionar las herramientas que son aplicables y sostenibles, y a la vez responden a una necesidad urgente, de acuerdo con el input provisto por los usuarios.

Biografia do Autor

  • Hung-da Wan, University of Texas at San Antonio
    Assistant Professor, Department of Mechanical Engineering (University of Texas at San Antonio). Received a Ph.D. in Industrial & Systems Engineering (Manufacturing Systems Engineering Option) from Virginia Polytechnic Institute and State University, Virginia Tech (2006), a M.Sc. in Industrial Engineering (2006) and a B.S. in Mechanical Engineering (1994), both from National Taiwan University, His areas of interest are: Sustainability of manufacturing systems; Lean Manufacturing Systems: assessment, value stream mapping and engineering, performance measurement systems, simulation and training programs, lean and six sigma integration; and computer integrated manufacturing and flexible automation.
  • Aniket Mohan Sahasrabudhe, University of Texas at San Antonio
    Master of Science in Mechanical Engineering, University of Texas at San Antonio; B.S. in Production Engineering of University of Pune (India). As a graduate student, he was a member of the Sustainable Manufacturing Systems Laboratory (SMS Lab), developed by the Mechanical Engineering Department at UTSA. His professional skills are in the following areas: lean manufacturing, six sigma, design of machine elements, production planning and scheduling, design for manufacturing and assembly, and inventory management. He is currently an Asst Project Manager at Micro-Supreme Auto Industry, an Engine Precision Parts and Gauges Manufacturing Company in India.
  • Leonardo Rivera, Universidad Icesi
    Industrial Engineer (Universidad del Valle, 1994); Master of Science in Industrial Engineering (Georgia Institute of Technology, 1996); Ph.D in Industrial and Systems Engineering (Virginia Polytechnic Institute and State University, 2006). Former Head of the Industrial Engineering Department and Director of the Industrial Engineering Program at Universidad Icesi, where he worked from May, 1998 to January, 2014. Presently affiliated with the School of Industrial Engineering at Universidad del Valle (Cali - Colombia), and their research Group Logística y Producción.

Referências

Abdullah, F. (2003). Lean manufacturing tools and techniques in the process industry with a focus on steel [Doctoral Dissertation]: University of Pittsburgh: PA

Gungor, A. (2006). Evaluation of connection types in design for disassembly (DFD) using analytic network process. Computer & Industrial Engineering, 50(1), 35-54

Gilbert, L. (2008). GAP analysis for information technology at Sacramento State: A self-study [on line]. Retrieved from http://www.csus.edu/irt/cio/strategicplanning/documents/GapAnalysisForInformationTechnology.pdf

Liker, J. & Convis, G. (2011). The Toyota way to lean leadership: Achieving and sustaining excellence through leadership development. New York, NY: McGraw-Hill

Marvel, J.H. & Standridge, C.R. (2009). A simulated-enhanced lean design process. Journal of Industrial Engineering and Management, 2(1), 90-113

Nicholas, J. (2010). Production for competitive advantage: A comprehensive guide to lean methodologies and management practices. New York, NY: Productivity

Ohno, T. (1997). Toyota production system: Beyond large-scale production. New York, NY: Productivity

Rivera, L. (2008). Justificación conceptual de un modelo de implementación de Lean Manufacturing. Heurística, 15, 91-106

Saaty, T. L. (1980). The analytic hierarchy process. New York, NY: Mcgraw-Hill

Saaty, T.L. (1996). Decision making for Leaders. Pittsburgh, PA: RWS

Womack, J.P., Jones D.T., & Roos, D. (1990). The machine that changed the world. New York, NY: Macmillan/Rawson

Womack, J.P. & Jones, D. (1996). Lean thinking: banish waste and create wealth in your corporation. New York, NY: Simon & Schuster

Womack, J. (2002). Lean thinking: Where have we been and where are we going? Manufacturing Engineering, 129(3), L2-L6

Publicado

2014-03-30

Edição

Seção

Original Research