Modelado de canal inalámbrico empleando técnicas de trazado de rayos: Una revisión sistemática

Autores

  • Andrés Navarro Cadavid Universidad Icesi, Cali
  • Dinael Guevara Ibarra Universidad Francisco de Paula Santander, Cúcuta
  • Jorge Gómez Rojas Universidad del Magdalena, Santa Marta

DOI:

https://doi.org/10.18046/syt.v12i30.1859

Palavras-chave:

Canal inalámbrico, trazado de rayos, modelado de canal

Resumo

Este trabajo presenta un análisis de las investigaciones realizadas por la comunidad científica que reportan características similares en su evaluación. Predicciones basadas en el uso de herramientas computacionales que mejoran cada vez los tiempos de respuesta con precisiones aceptables. Estos cálculos han sido corroborados a través de extensas campañas de medición en sitios específicos con el fin de evidenciar las hipótesis. Finalmente se exponen los resultados para cada situación analizada.

Biografia do Autor

  • Andrés Navarro Cadavid, Universidad Icesi, Cali

    Profesor titular y Director del Grupo de Investigación en Informática y Telecomunicaciones (i2T) de la Universidad Icesi de Cali. Es Ingeniero Electrónico (1993) y Magister en Gestión de la Tecnología (1999) de la Universidad Pontificia Bolivariana de Medellín y Doctor Ingeniero en Telecomunicación de la Universidad Politécnica de Valencia, España (2003).

  • Dinael Guevara Ibarra, Universidad Francisco de Paula Santander, Cúcuta

    Ingeniero electricista de la Universidad Industrial de Santander (Colombia), especialista en Teleinformática de la Universidad Distrital Francisco José de Caldas (Colombia), Maestría en Ingeniería Electrónica con énfasis en Telecomunicaciones de la Universidad Nacional Experimental Politécnica Antonio José de Sucre (Venezuela) y Doctor en Ingeniería área de Telecomunicaciones de la Universidad Pontificia Bolivariana de Medellín (Colombia). Actualmente labora como docente asociado a la Facultad de Ingeniería de la Universidad Francisco de Paula Santander en el programa de Ingeniería Electrónica y es el Director del Grupo de Investigación y Desarrollo en Telecomunicaciones [GIDT]. Su área de interés son los modelos de canal inalámbrico.

  • Jorge Gómez Rojas, Universidad del Magdalena, Santa Marta

    Estudiante de doctorado en Ingeniería de la Universidad Pontificia Bolivariana [UPB] de Medellín; Magister en Ingeniería Electrónica, de la Universidad Nacional Experimental del Táchira; Especialista en Teleinformática e Ingeniero Electrónico de la UPB. Docente investigador de la Universidad de Magdalena (Santa Marta, Colombia).

Referências

Agelet, F. (2000). Efficient ray-tracing acceleration techniques for radio propagation modeling. IEEE Transactions on Vehicular Technology, 49(6), 2089-2104.

Athanaileas, T. E., Athanasiadou, G. E., Tsoulos, G. V., & Kaklamani, D. I. (2010). Parallel radio-wave propagation modeling with image-based ray tracing techniques. Parallel Computing, 36(12), 679-695.

Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., … Rappaport, T. (2013). 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City. 2013 IEEE International Conference on Communications (ICC), (pp. 5143-5147). doi:10.1109/ICC.2013.6655399

Balanis, C. (1998). Antenna theory. Hoboken, NJ: Wiley
Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the systematic literature review process within the software engineering domain. Journal of Systems and Software, 80(4), 571-583. doi:10.1016/j.jss.2006.07.009

Cavalcante, A., de Sousa, M., Costa, J.C., Frances, C.R. & Cavalcante, G. (2007). A parallel approach for 3d ray-tracing techniques in the radio propagation prediction. Journal of Microwaves and Optoelectronics, 6(1), 207-219.

Cavalcante, A., de Sousa, M., Sales-Jr, C., Costa, J.C., Cavalcante, G., & Frances, C.R. (2005). Computational parallelization strategy applied in full 3D ray-tracing wireless channel modeling [draft paper for IMOC 2005]. Recuperado de http://www.lea.ufpa.br/producaocientifica/seminarios/imoc2005_andre.pdf

Corucci, A., Usai, P., Monorchio, A., & Manara, G. (2014). Wireless propagation modeling by using ray-tracing. En R. Mittra [Ed.]. Computational electromagnetics: recent advances and engineering applications, New York, NY: Springer

Degli-Esposti, V. (2014, April). Ray Tracing propagation modelling: Future prospects. In 2014 8th European Conference on Antennas and Propagation (EuCAP), (pp. 2232-2232). IEEE.

Doicu, A., & Wriedt, T. (1997). Plane wave spectrum of electromagnetic beams. Optics Communications, 136(2), 114-124

El-Sallabi, H., Abdallah, M., Qaraqe, K. (2013). Impact of Reconfiguring Inclination Angle of Client´s Antenna on Radio Channel Characteristics of IEEES02.11ac System. 2013 Proceedings of the International Symposium on Antennas & Propagation (ISAP), (pp.430-433). IEEE

Erceg, V., Fortune, S.J., Ling, J., Rustako, A.J., Valenzuela, R.A. (1997). Comparisons of a computer-based propagation prediction tool with experimental data collected in urban microcellular environments. IEEE Journal on Selected Areas in Communications, 15(4), 677–684.

Feng, S., & Li, D. (2013). A research on novel direct vector method for ray tracing. Optik - International Journal for Light and Electron Optics, 124(23), 6377–6381. doi:10.1016/j.ijleo.2013.05.021

Fügen, T., Knörzer, S., Landmann, M., Thomä, R., & Wiesbeck, W. (2007, November). A 3−D ray tracing model for macrocell urban environments and its verification with measurements. In Second European Conference on Antennas and Propagation (EuCAP), (p.401). Stevenage, UK: IET

Gohil, A., Modi, H., & Patel, S. K. (2013, March). 5G technology of mobile communication: A survey. In Intelligent Systems and Signal Processing (ISSP), 2013 International Conference on (pp. 288-292). IEEE.

Ho, S. L., Wang, J., Fu, W. N., & Sun, M. (2011). A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging. IEEE Transactions on Magnetics, 47(5), 1522-1525.

Kanatas, A. G., Kountouris, I. D., Kostaras, G. B., & Constantinou, P. (1997). A UTD propagation model in urban microcellular environments. IEEE Transactions on Vehicular Technology, 46(1), 185-193.
Kostov, N. (2003). Mobile radio channels modeling in MATLAB. Radioengineering -Prague-, 12(4), 12-17.

Kurner, T., Cichon, D. J., & Wiesbeck, W. (1993). Concepts and results for 3D digital terrain-based wave propagation models: An overview. IEEE Journal on Selected Areas in Communications, 11(7), 1002-1012.

Lai, Z., Bessis, N., de la Roche, G., Song, H., Zhang, J., & Clapworthy, G. (2009). An intelligent ray launching for urban prediction. In 3rd European Conference on Antennas and Propagation, 2009. EuCAP 2009. (pp. 2867-2871). IEEE.

Lee, W. C. (1985). Estimate of local average power of a mobile radio signal. IEEE Transactions on Vehicular Technology,34(1), 22-27.

Liang, G., & Bertoni, H. L. (1997). Review of ray modeling techniques for site specific propagation prediction. In Wireless Communications (pp. 323-343). New York, NY: Springer.

Liu, Y., Shi, D., Gao, Y., & Wang J. (2011). A new method for reducing simulation time based on ray-tracing algorithm. 2012 Asia-Pacific Conference on Environmental Electromagnetics (CEEM), (pp. 163-166). Piscataway, NJ: IEEE

Lu, J., Bertoni, H., Remley, K., Young, W., & Ladbury, J. (2014). Site-Specific Models of the Received Power for Radio Communication in Urban Street Canyons. IEEE Transactions on Antennas and Propagation , 62(4), 2192–2200

Lutz, E. (2013, September). Modelling of the land mobile satellite communications channel. In 2013 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), (pp. 199-202). IEEE.

Montenegro-Villacieros, B., Oestges, C., Vanhoenacker-Janvier, D., Prieto-Cerdeira, R., & Martellucci, A. (2010). Review and update of mobile data processing for the Land Mobile Satellite channel modelling. In Antennas and Propagation (EuCAP), 2010 Proceedings of the Fourth European Conference on (pp. 1-4). IEEE.

Moraitis, N., Panagopoulos, A.D., & Popescu, I. (2014). Propagation study of a wideband SIMO land mobile satellite system in a dense urban environment. In Antennas and Propagation (EuCAP), 2014 8th European Conference on (pp. 1269-1273). IEEE.

Navarro, A. & Guevara, D. (2010c). Using game engines in ray tracing physics. In 2010 IEEE Latin-American Conference on Communications (LATINCOM), (pp. 1-5). IEEE.

Navarro, A., & Guevara, D. (2010a). Applicability of game engine for ray Tracing Techniques in a Complex Urban Environment. In 2010 IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall), (pp. 1-5). IEEE.

Navarro, A., & Guevara, D. (2010b). Using game engines for wideband channel estimation parameters in Andean cities. In Antennas and Propagation (EuCAP), 2010 Proceedings of the Fourth European Conference on (pp. 1-5). IEEE.

Navarro, A., Guevara, D., & Cardona, N. (2014). Using game engines and graphic technologies for ray-tracing in future wireless. In 2014 8th European Conference on Antennas and Propagation (EuCAP), (pp. 1780-1784). IEEE.

Pajusco, P. (2006). Propagation channel models for mobile communication. Comptes Rendus Physique, 7(7), 703-714.

Pontes, M.S. & Silva-Mello, L.A.R. (2010). Review on terrestrial propagation channel modelling. In Antennas and Propagation (EuCAP), 2010 Proceedings of the Fourth European Conference on (pp. 1-5). IEEE.

Rautiainen, T., Wolfle, G., & Hoppe, R. (2002). Verifying path loss and delay spread predictions of a 3D ray tracing propagation model in urban environment. In IEEE 56th Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. (Vol. 4, pp. 2470-2474). IEEE.

Ros, F. J., Martinez, J. A., & Ruiz, P. M. (2014). A survey on modeling and simulation of vehicular networks: Communications, mobility, and tools. Computer Communications, 43, 1-15.

Sarkar, T.K., Ji, Z., Kim, K., Medouri, A., & Salazar-Palma, M. (2003). A survey of various propagation models for mobile communication. IEEE Antennas and Propagation Magazine, 45(3), 51-82

Schaubach, K. R., & Davis IV, N. J. (1994). Microcellular radio-channel propagation prediction. Antennas and Propagation Magazine, IEEE, 36(4), 25-34.

Schneider, C., Narandzic, M., Kaske, M., Sommerkorn, G., & Thoma, R. S. (2010). Large scale parameter for the WINNER II channel model at 2.53 GHz in urban macro cell. In Vehicular Technology Conference (VTC 2010-
Spring), 2010 IEEE 71st (pp. 1-5). IEEE.

Sharma, S. K. (2012). Characterization and modeling of MIMO wireless channels based on correlation tensor. Computers & Mathematics with Applications, 64(2), 89-101.

Son, H-W., & Myung, N-H. (1999). A new approach to 3-d ray tracing for a microcellular propagation prediction model. Microwave and Optical Technology Letters, 23(3), 159-163.

Soni, S., & Bhattacharya, A. (2012). An efficient two-dimensional ray-tracing algorithm for modeling of urban microcellular environments. AEU-International Journal of Electronics and Communications, 66(6), 439-447.

Talha, B., & Patzold, M. (2011). Channel models for mobile-to-mobile cooperative communication systems: A state of the art review. IEEE Vehicular Technology Magazine,6(2), 33-43.

Tameh, Doufexi, Hunukumbure, & Nix (2007). Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data. IEEE Transactions on Vehicular Technology, 56(3), 1019-1032.

Tranter, W., Shanmugan, K., Rappaport, T., & Kosbar, K. (2003). Principles of communication systems simulation with wireless applications. Upper Saddle River, NJ: Prentice Hall

Unión Internacional de Telecomunicaciones [UIT]. (2013). Key ICT indicators for developed and developing countries and the world (totals and penetration rates) [on line]. Retrieved from http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/ITU_Key_2005-2013_ICT_data.xls

Whitteker, J. H. (1988). Measurements of path loss at 910 MHz for proposed microcell urban mobile systems. IEEE Transactions on Vehicular Technology, 37(3), 125-129.

Yang, Y., Zong, R., Gao, X., & Cao, J. (2010, December). Channel modeling for High-Altitude platform: A review. In Intelligent Signal Processing and Communication Systems (ISPACS), 2010 International Symposium on (pp. 1-4). IEEE.

Zhou, T., Sharif, H., Hempel, M., Mahasukhon, P., Wang, W., & Ci, S. (2009, June). A novel ray tracing based multipath modeling approach for site-specific WLAN simulations. In Communications, 2009. ICC'09. IEEE International Conference on (pp. 1-6). IEEE.

Zhu, H., Takada, J.I., Araki, K., & Kobayashi, T. (2001). Verification of a two‐dimensional/three‐dimensional hybrid ray‐tracing method for spatiotemporal channel modeling. Radio Science, 36(1), 53-66.
Guevara, D. (2011). Estimación de parámetros de canal en entornos 3D [tesis]. Medellín, Colombia: Universidad Pontificia Bolivariana.

Zahedi, Y., Ngah, R., Chude-Okonkwo, U., Nunoo, S., & Mokayef, M. (2014). Modeling the RMS delay spread in time-varying UWB communication channels. 2014 5th International Conference on Intelligent and Advanced Systems (ICIAS), (pp.1-5). IEEE

Publicado

2014-09-30

Edição

Seção

Reviews