Software em controle estatístico de processos: uma revisão sistemática

Autores

  • Bibiana Y. Garcés Corporación Universitaria Comfacauca
  • Francisco J. Pino Universidad del Cauca

DOI:

https://doi.org/10.18046/syt.v12i31.1915

Palavras-chave:

Controle estatístico de processos, Six Sigma, processos de software, melhora de processos de software.

Resumo

A melhoria de processos de software [Software Process Improvement, SPI] exige técnicas avançadas para a gestão quantitativa, de modo que, a partir da análise de indicadores relevantes na organização, seja possível facilitar a tomada de decisão para essa melhoria. Dentro do conjunto de técnicas, merece especial atenção o controle estatístico de processos (Statistical Process Control, SPC), que tem vindo a ganhar aceitação em empresas que estão preparadas para atingir um alto grau de maturidade em seus processos e que precisam dele para a implementação de seus programas de medição. O artigo desenvolve uma revisão sistemática para uma análise crítica do estado da arte das técnicas do SPC mais adequadas que podem ser adotadas na gestão quantitativa de software. Neste sentido, não encontrando uma proposta integrada de software de gestão quantitativa que possa permitir benefícios significativos uma vez que mais organizações irão melhorar seus processos ou aos gerentes de projetos de software, a revisão sistemática é uma maneira rigorosa para avaliar e definir ferramentas, tecnologias, técnicas e métodos de aplicação de acordo com a evidência empírica disponível relatada na literatura.

Biografia do Autor

  • Bibiana Y. Garcés, Corporación Universitaria Comfacauca
    Master in Informatics Engineering, Master in Advanced Computer Technologies from Universidad de Castilla La Mancha (Spain), and Engineering in Industrial Automation from the Universidad del Cauca (Colombia). She is currently Professor and Coordinator of Social Projection at the Corporación Universitaria de Comfacauca´s Engineering Program. She also serves as a consultant on implementation and improvement of software factories in Kybele Consulting Colombia SAS. His areas of research and professional interest are quality and statistical process control software for advanced global software process improvement.
  • Francisco J. Pino, Universidad del Cauca

    Doctor in Informatics Engineering from Universidad de Castilla-La Mancha (Spain), Electronics and Telecommunications Engineer, and Specialist in Networks and Telematics Services from Universidad del Cauca (Colombia). He is a professor attached to the Faculty of Electrical Engineering and Telecommunications, member of IDIS Research Group (Research and Development in Software Engineering) at the Universidad del Cauca, and founder of Kybele Consulting Colombia SAS, an advisory company in quality and process, products, and services software improvement. Chief Auditor AENOR ISO 15504-SPICE. His research and professional interests are quality and process improvement of software development in small enterprises and multi-model environments.

Referências

Barbiero, C., Flury , M., Pagura, J., Quaglino, M., & Ruggieri , M. (2005). La importancia de la estadística en estrategias de mejora continua de la calidad. La metodología Seis Sigma. (Vol. Décimas Jornadas "Investigaciones en la Facultad"). Rosario, Argentina: Universidad Nacional de Rosario.

Hale, C., & Row, M. (2012). Do Not Get Out of Control: Achieving Real-time Quality and Performance. Retrieved from Crosstlak on line, http://www.crosstalkonline.org/storage/issue-archives/2012/201201/201201-Hale.pdf.

Park, Y., Choi, H., & Baik, J. (2007). A Framework for the Use of Six Sigma Tools in PSP/TSP. In Software Engineering Research, Management & Applications, 2007. SERA 2007. 5th ACIS International Conference on (pp. 807-814). Los Alamitos, CA: IEEE Computer Society.

Russ, R., Sperling , D., Rometsch, F., & Louis, P. (2008). Applying Six Sigma in the field of software engineering. In Software process and product measurement (pp. 36-47). Berlin Heidelberg, Germany: Spinger.

Wang, Q., Jiang, N., Gou, L., Liu, X., Li, M., & W, Y. (2006). BSR: A Statistic-Based Approach for Establishing. Proceedings of the 28th international conference on Software engineering (pp. 585-594). New York, NY: ACM.

Xiaosong, Z., Zhen, H., Fangfang , G., & Shenqi, Z. (2008). Research on the Application of Six Sigma in Software Process Improvement. Intelligent Information Hiding and Multimedia Signal Processing, 2008. IIHMSP'08 International Conference (pp. 937-940). Piscataway, NJ: IEEE.

Alzate Naranjo, J., & Molina Correa, A. (2009). Gestión cuantitativa del proceso de desarrollo de software . Medellín, Colombia: Universidad EAFIT.

Baldasarre, M. T., Caivano, D., Kitchenham, B., & Visaggio, G. (2007). Systematic Review of Statical Process Control: An Experience Report. 11th International Conference on Evaluation and Assessment in Software Engineering (EASE). Keele, UK: Keele University.

Baldassarre, M. T., Boffoli, N., Caivano, D., & Visaggio, G. (2008). A hands on approach for Teaching Systematic Review. In Product-focused software process improvement (pp. 415-426). Berlin Heidelberg, Germany: Springer.

Baldassarre, M., Caivano, D., & Visaggio, G. (2006). Non Invasive Monitoring of a Distributed Maintenance Process. Instrumentation and Measurement Technology Conference, 2006. IMTC 2006. Proceedings of the IEEE (pp. 1098-1103). Piscataway, NJ: IEEE.

Baldassarre, T., Boffoli, N., Caivano, D., & Visaggio, G. (2004). Manging software process improvement (SPI) through statical rocess control (SPC). In Product Focused Software Process Improvement (pp. 30-46). Berlin Heidelberg, Germany: Springer.

Batini, C., & Sacannapieco, M. (2006). Data quality: concepts, methodologies and techniques. Berlin, Germany: Springer Verlag.

Boffoli, N., Bruno, G., Caivano, D., & Mastelloni, G. (2008). Statistical process control for software: a systematic approach. Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement (pp. 327-329). New York, NY: ACM.

Brereton , P., Kitchenham , B., Budgen, D., Turner, M., & Khalil, M. (2005). Employing sistematic literature review: An experience report [unpublished draft]. Keele, UK: School of Computing & Mathematics, Keele University.

Burr, A. & Owen, M. (1996). Statical methods for software quality. Scottsdale, AZ: Coriolis

Caballero , I. (2008). Introducción a la calidad de los datos y de la información. Escuela Superior de Informatica. Ciudad Real, Spain: Universidad Castilla la Mancha.

Caivano, D. (2000). Statical process control. (SERLAB, Ed.) Bari, Italy: Università degli Studi di Bari.

Caivano, D. (2011). Six Sigma for Software [Case Study]. II seminario si incentrerà in maniera pratica. Italy.

Card , D., Domzalski, K., & Davies, G. (2008). Making statistics part of decision making in an engineering organization. IEEE Software, 25(3), 37-47.

Card, D. (1994). Statical process control for software. IEEE SOftware, 11(3), 95-97.

Carleton, A., & Florac, A. (1999). Statically Controlling the Software Process. The 99 SEI Software Engineering Symposium. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.

Ferreiro, O. P. (2010). Control estadístico de procesos y estrategias Seis Sigma. Fonte: http://www.oocities.org/es/foro2_control_de_procesos/genlace1.pdf

Florac, W. A., & Carleton, A. D. (1999). Measuring the software process: statical process control for software process improvement. Indianapolis, IN: Pearson.

Gardiner, J., & Montgomery, D. (1987). Using statistical control of charts for software quality control. Quality and Reliability Engineering International, 3, 15-20.

Genero, M., Fernández, A. M., Nelson, H. J., & Piattini, M. (2011). How to perform systematic reviews: Theory and examples. In A. R. group (Ed.), Metodologías y Técnicas de Investigación en Informática. Universidad Castilla - La Mancha: Ciudad Real, Spain.

ISO. (2003). Guidance on statistical techniques for ISO 9001:2000. Geneva, Switzerland: ISO.

Juran, J. M. (1951). Juran´s quality control handbook. New York, NY: McGraw Hill.

Kasunic, M., McCurley, J., Goldenson, D., & Zubrow, D. (2011). An investigation of techniques for detecting data anomalies in earned value management data [tech. Rep-]. Pittsburgh, PA: Carnegie Mellon University.

Kitchenham, B. (2004). Procedures for performing systematic reviews [technical report TR/SE0401]. Keele, UK: Keele University.

Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in softwrare engineering [EBSE technical report]. (D. o.-U. Sotfware Engineering Group - Keele University) Keele, UK: Keele University.

Komuro, M. (2006). Experiences of Applying SPC Techniques to software Development Processes. Proceedings of the 28th international conference on Software engineering (pp. 577-584). New York, NY: ACM.

Lantzy, M. (1992). Application of Statical Process Control to the Software Process. Proceeding WADAS '92 Proceedings of the ninth Washington Ada symposium on Ada: Empowering software users and developers (pp. 113-119). New York, NY: ACM.

Lefcovich, M. L. (2004). Six Sigma, un nuevo paradigma en gestión. Buenos Aires, Argentina: El Cid.

López. (2007). Six Sigma aplicado a la gestión de Mantenimiento en la empresa Drummond Ltd [monografía]. Universidad Industrial de Santander: Bucaramanga, Colombia.

Manlove, D., & Kan, S. (2007). Practical statistical process control for software metrics. Software Quality Professional Magazine, 9(4), 15-26.

Molina C., A. M., Alzate N., J. A., & Rincon B., R. D. (2009). Gestión Cuantitativa del proceso de desarrollo de software [thesis]. Escuela de Ingeniería de Sistemas. Medellin, Colombia: Universidad EAFITs.

Montoni, M., Rocha, A., & Weber, K. C. (2009). MPS. BR: A succesful program for softwrae process improvement in Brazil. Journal of Software Maintenance and Evolution. Research and Practice , 14(5), 289-300.

Muro, G. (2007). Aplicación de la metodología "Six Sigma" (6 o) a un mantenimiento preventivo de una turbina eólica [degree paper]. Universidad Pública de Navarra: Pamplona, Spain.

Paulk, M. C., Weber, C. V., Garcia, S. M., Chrissis, M., & Bush, M. (1993). Key practices of capability maturity model [Tech. Rep.] (Vol. Version 1.1). (S. E. Institute, Ed.) Pittsburgh, PA: Carnegie Mellon University.

Perini, M. B., Rocha, A. R., & Falbo, R. D. (2010). Evaluating the Suitability of a Measurement Repository for Statical Process Control. In ESEM´10 (Ed.), Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (p. 27). New York, NY: IEEE.

Piattini V., M. G., García Rubio, F. Ó., Garzás Parra, J., & Genero Bocco, M. F. (2008). Medición y estimación del software. Madrid, Spain: Ra-Ma.

Pino, F. J., García, F., & Piattini, M. (2007). Software process improvement in small and medium software enterprises: a systematic review. Software Quality Journal, 16(2), 237-261.

Ruiz-Falcó, A. (2006). Control estadístico de procesos [class notes]. Madrid, Spain: Universidad Pontificia Comillas.

Salin Monteiro, L. F., & Marcal de Oliveira, K. (2009). Defining a catalog of indicators to support process. Journal of Software Maintenance and Evolution: Research and Practice, 23(6), 395-422.

Sargut, K., & Deminörs, O. (2006). Utilization of statical process control (SPC) in emergent software organizations: pitfalls and suggestions. Software Quality Journal, 14(2), 135-157.

Tarhan , A., & Demirörs, O. (2008). Assessment of software process and metrics. Lecture Notes in Computer Science, 4895, 102-113.

Tarhan, A., & Demirors, O. (2006). Investigating suitability of software process and metric for statical process control. In Software Process Improvement (pp. 88-99). Berlin Heidelberg, Germany: Springer.

Tayntor, C. (2007). Six Sigma software development (Vol. 2). Boca Raton, FL: Auerbach.

Wang , Q., Gou, L., Jiang, N., & Che, M. (2007). An empirical study on establishing quantitative. Lecture Notes in Computer Science, 4470, 233-245.

Wang, Q., Jiang, N., Gou, L., Liu, X., Li, M., & Wang, Y. (2006). BSR: A Statistic-based Approach for Establishing and Refining Software Process Performance Baseline. ICSE '06 Proceedings of the 28th international conference on Software engineering (pp. 585-594). New York, NY: ACM.

Weller, E. (2000). Practical applications of statistical process control. IEEE Software, 17(3), 48-55.

Downloads

Publicado

2014-12-23

Edição

Seção

Reviews