Autômatos celulares: melhorias de controlo e imunidade na simulação de fenômenos propagativos

Autores

  • Pablo Emilio Delvalle Arroyo Universidad Santiago de Cali
  • Carlos Andrés Fory Aguirre Universidad Santiago de Cali
  • Juan Manuel Serna Ramírez Universidad Santiago de Cali

DOI:

https://doi.org/10.18046/syt.v13i35.2149

Palavras-chave:

Autômato celular, propagação epidémica, modelo SIR de recuperação da influenza AH1NX.

Resumo

Os autômatos celulares bidimensionais são uma poderosa
ferramenta para a simulação de sistemas discretos complexos,
são úteis no tratamento de fenômenos propagativos tais
como epidemias ou incêndios. Este artigo propõe uma série de
melhorias teóricas, funcionais e aplicáveis ao estudo publicado
em 2009 por Hoya, Martin del Rey e Rodriguez, especificamente
destinadas a controlar os padrões de dispersão em autômatos
celulares com reticulados homogêneos de tamanho variável,
permitindo a simulação de conjuntos de células imunes que
agem como barreiras nos ambientes estudados. Como agente
propagante foi utilizado o modelo epidemiológico Suscetível-Infectado-
Recuperado [SIR] de recuperação da influenza tipo A.
O trabalho foi desenvolvido usando MATLAB®, resultando em
simulações mais realistas e versáteis, que parecem caber mais
fielmente às observações realizadas em padrões conhecidos de
influenza.

Biografia do Autor

  • Pablo Emilio Delvalle Arroyo, Universidad Santiago de Cali

    Ingeniero Electricista de la Universidad del Valle, Especialista en Docencia para la Educación Superior y Magister en Educación Ambiental y Desarrollo Sostenible de la Universidad Santiago de Cali, Profesor de tiempo completo especial de la Universidad Santiago de Cali. Entre sus áreas de interés están el modelamiento matemático y la compatibilidad electromagnética. Es miembro del Grupo de Investigación en Ingeniería Electrónica, Industrial y Ambiental (GIEIAM) de la Universidad Santiago de Cali.

  • Carlos Andrés Fory Aguirre, Universidad Santiago de Cali

    Estudiante del programa de Bioingeniería de la Universidad Santiago de Cali, y miembro del Grupo de Investigación en Ingeniería Electrónica, Industrial y Ambiental (GIEIAM) de la Universidad Santiago de Cali.

  • Juan Manuel Serna Ramírez, Universidad Santiago de Cali

    Tecnólogo en mantenimiento electrónico e instrumentista industrial del Servicio Nacional de Aprendizaje [SENA]. Estudiante del programa de Bioingeniería de la Universidad Santiago de Cali. Desarrollador independiente en las áreas de programación de redes neuronales artificiales y quipos de aprovechamiento de energía fotovoltaica por fototropismo mecánico. Es miembro del Grupo de Investigación en Ingeniería Electrónica, Industrial y Ambiental (GIEIAM) de la Universidad Santiago de Cali.

Referências

Abarbanel, H., Case, K., Despain, A., Dyson, F., Freedman, M., ..., Rothaus, O. (1990). Cellular automata and parallel processing for practical fluid-dynamics problems [report JSR-86-303]. McLean, VA: MITRE. Available at: https://www.fas.org/irp/agency/dod/jason/automata.pdf

Andreasen, V., Viboud, C., & Simonsen, L. (2008). Epidemiologic characterization of the 1918 influenza pandemic summer wave in Copenhagen: implications for pandemic control strategies. Journal of Infectious Diseases, 197(2), 270-278). Available at: http://www.ncbi.nlm.nih.gov/pubmed/18194088

Arenas, A. J., González-Parra, G., & Moraño, J. A. (2009). Stochastic modeling of the transmission of respiratory syncytial virus (RSV) in the region of Valencia, Spain. Biosys, 96(3), 206-212.

Beauchemina, C., Samuelb, J. & Tuszynskia, J. (2005). A simple cellular automaton model for influenza A viral infections. Journal of Theoretical Biology 232, 223-234.

Burniaková, L. (2007). The mathematics of infectious diseases [master thesis]. Comenius University: Bratislava, Eslovaquia. Retrieved from: http://diplomovka.sme.sk/zdroj/3138.pdf

Chowell, G., Ammon, C., Hengartner, N., & Hyman, J. (2006). Transmission dynamics of the great influenza pandemic of 1918 in
Geneva, Switzerland: Assessing the effects of hypothetical interventions. Journal of Theoretical Biology, 241(2), 93-204). Available at: http://math.lanl.gov/~mac/papers/bio/GAHH06b.pdf

Coburn, B., Wagner, B., & Blower, S. (2009) Modeling epidemics and pandemics: Insights into the future of swine flu (H1N1). BMC Medicine, 7. doi:10.1186/1741-7015-7-30 Available at: http://www.biomedcentral.com/content/pdf/1741-7015-7-30.pdf

Cuesta, H., Trueba, A., & Ruiz J. (2012). Autómata Celular Estocástico paralelizado por GPU aplicado a la simulación de enfermedades infecciosas en grandes poblaciones. Acta Universitaria, 22(6), 16-19. Available at: http://www.actauniversitaria.ugto.mx/index.php/acta/article/viewFile/356/pdf

Cunha, B. (2004). Influenza: Historical aspects of epidemics and pandemics. Infectious Disease Clinics of North America, 18(1), 148-155.

Doracelli, H. & Ospina, J. (2007). Bases para la modelación de epidemias: el Caso del síndrome respiratorio agudo severo en Canadá. Revista Salud Pública, 9(1), 121-123.

Dubacq, J.-C., Durand, B., & Formenti, E. (2001). Kolmogorov complexity and cellular automata classification. Theoretical Computer Science, 259(1), 271-285. doi:10.1016/S0304-3975(00)00012-8

Firestone, S., Cogger, N., Ward, M., Toribio, J., Moloney, B., & Dhand, N. (2012). The Influence of meteorology on the spread of influenza: Survival analysis of an equine influenza (A/H3N8) Outbreak. PloS One, 7(4). e35284. doi: 10.1371/journal.pone.0035284

Fonseca, F. & Blanco, W. (2010). Mecánica estadística de redes y propagación de enfermedades infecciosas. Revista Colombiana de Física, 42(3), 322-323. Available at: http://revcolfis.org/ojs/index.php/rcf/article/viewArticle/420316

Ganguly, N., Sikdar, B., Deutsch, A., Canright, G., & Chaudhuri (2003). A survey on cellular automata. Retrieved from: http://www.cs.unibo.it/bison/publications/CAsurvey.pdf

Gharib-Zahedi, R. M. & Ghaemi, M. (2012). Kinetics of hepatitis B virus infection: A cellular automaton model study. Journal of Paramedical Sciences, 3(3). Retrieved from: http://journals.sbmu.ac.ir/jps/article/download/3482/3130

Gómez, G. & Vargas-De-León, C. (2012). Modeling control strategies for influenza A H1N1 epidemics: SIR models. Revista Mexicana de Física, S58(1), 37-43. Available at: http://rmf.fciencias.unam.mx/~raem/caos/SC-7_1.pdf

Hauska, H. & Linde, A. (2008). The Russian influenza in Sweden in 1889-90: An example of geographic information system analysis. Eurosurveillance, 13(49). Retrieved from: http://www.ncbi.nlm.nih.gov/pubmed/19081003

Hoya, S., Martin del Rey, A. & Rodríguez, G. (2009). Using cellular automata to simulate epidemic diseases. Applied Mathematical Sciences, 3(20), 959-968. Available at: http://www.m-hikari.com/ams/ams-password-2009/ams-password17-20-2009/delreyAMS17-20-2009.pdf

Knipl, D. & Rӧst, G. (2011). Influenza models with wolfram mathematica [blog - Interesting mathematical problems in sciences and everyday life - 2011]. Retrieved from: http://www.model.u-szeged.hu/etc/edoc/imp/GRost/GRost.pdf

Lahoz-Beltrá, R. (2004). Bioinformática: simulación, vida artificial e inteligencia artificial. Madrid, España: Díaz de Santos.

Madrigal, J., Muñoz, L.A., & Garcia, M.J. (2011). Autómatas celulares en redes de Boltzmann [paper in VIII Congreso Colombiano de Métodos Numéricos: Simulación en Ciencias y Aplicaciones Industriales 8CCMN – 2011, Agosto. 10-12, 2011, Medellín, Colombia, Universidad EAFIT]. Retrieved from: http://mecanica.eafit.edu.co/8ccmn/articulos/Madrigal-8ccmn2011.pdf

Martin, O., Odlyzko, A., Wolfram, S. (1984). Algebraic properties of cellular automata. Communications in mathematical physics, 93(2), 219-258. Available at: http://www.stephenwolfram.com/publications/academic/algebraic-properties-cellular-automata.pdf

Martin-del-Rey, A. (2009). Epidemiologia matemática usando autómatas celulares sobre grafos. In XXI Congreso de Ecuaciones Diferenciales y Aplicaciones / XI Congreso de Matemática Aplicada [Actas del Cyda]. Retrieved from: http://matematicas.uclm.es/cedya09/archive/textos/35_Martin-del-Rey-A.pdf

Mendes-dos-Santos, L. & Silva-de.Souza, F. (2012). Uma análise do modelo SIR aplicado ao estudo da influenza A. In CEMAC Nordeste 2012, (pp.20-23). Retrieved from: http://www.sbmac.org.br/cmacs/cmac-ne/2012/trabalhos/PDF/113.pdf

Mitchell, M., Hraber, P. & Crutchfield, J. (1993). Revisiting the edge of chaos: Evolving cellular automata to perform computations [Report No. SFI Working Paper 93-03-014]. Retrieved from: http://arxiv.org/pdf/adap-org/9303003.pdf

Morse, S. (1995). Factors in the emergence of infectious diseases. Emerging Infectious Diseases, 1(1), 7-15. Available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2626828/pdf/8903148.pdf

Ramasco, J. (2012). Predicción de los patrones de propagación de contacto con ordenadores. Medicina Balear, 28(1), 41-47. Available at: http://www.imbiomed.com.mx/1/1/articulos.php?method=showDetail&id_articulo=94336&id_seccion=5037&id_ejemplar=9224&id_revista=331

Romero, N. (2003). Comentarios sobre la definición de autómata celular. Boletín de la Asociación Matemática Venezolana, 10(1), 59-97. Available at: http://www.kurims.kyoto-u.ac.jp/EMIS/journals/BAMV/conten/vol10/neptali.pdf

Saldaña, J. (2010). La modelización de la propagación de epidemias. Matematicalia, 6(2). Retrieved from: http://dugi-doc.udg.edu/bitstream/handle/10256/7482/modelizaci%C3%B3n-propagaci%C3%B3n-epidemias.pdf?sequence=1

The Center for Food Security & Public Health (2009). Influenza-Factsheet. Ames, IO: Iowa State University.

Toole, M. (2000). Enfermedades transmisibles y su control. In Impacto de los desastres en la salud pública (pp. 79-100). Bogotá, Colombia: Organización Panamericana de la Salud.

Torok, M. (2003). Epidemic curves ahead. Focus on Field Epidemiology, 1(5). Retrieved from: http://nciph.sph.unc.edu/focus/vol1/issue5/1-5EpiCurves_issue.pdf

Vázquez, J. & Oliver J. (2008). Evolución de autómatas celulares utilizando algoritmos genéticos. Retrieved from: https://www.cs.us.es/cursos/ia1-2008/trabajos/articulo1.pdf

Wolfram, S. (1984). Universality and complexity in cellular automata. Retrieved from: http://www.stephenwolfram.com/publications/cellular-automata-complexity/

Wolfram. S (1988). Cellular automaton supercomputing. In Cellular automata and complexity: Collected papers by Stephen Wolfram, (pp. 499-509). Reading, MA: Addison-Wesley. Available at: http://www.stephenwolfram.com/publications/cellular-automata-complexity/

Yang, X. & Young, Y. (2005). Cellular automata, PDEs, and pattern formation. In Handbook of bioinspired algorithms and applications, (pp. 271-282). Boca Raton, FL: Taylor and Frnacis. Available at: http://arxiv.org/ftp/arxiv/papers/1003/1003.1983.pdf

Publicado

2015-12-03

Edição

Seção

Discussion papers