Programmable mobile robots as hands-on platform for basic programming

Authors

  • Sergio García Universidad del Valle, Cali
  • Sebastián Rueda Universidad del Valle, Cali
  • Beatriz Florián Gaviria Universidad del Valle, Cali
  • Bladimir Bacca Cortés Universidad del Valle, Cali

DOI:

https://doi.org/10.18046/syt.v15i41.2455

Keywords:

Mobile robots, engineering education, Web-responsive.

Abstract

Nowadays, mobile robots platforms are being used in different education contexts. The state of the art shows that 197 papers have been published in this area knowledge over ten years. Latin America faces a problem regarding the enrolled students in engineering programs. The SPADIES program (Colombia) affirms that the lack of motivation and interaction with real artifacts relating theory and practice is an important aspect for dropout. In this work, a platform composed by a set of programmable mobile robots, and a WEB-responsive software tool for programming at different levels of knowledge were implemented. The set of mobile robots were implemented with proximity, trajectory, light, inertial, and vision sensors; also, tools such as Bluetooth and LEDs-ring are included; and, a mechanical support for an erasable marker. The WEB-responsive tool supports graphical programming for novice, Python programming for middle, and ANSI-C for advanced level learners. 

Author Biographies

  • Sergio García, Universidad del Valle, Cali

    Electronics Engineer from Universidad del Valle (Cali, Colombia) 

     

  • Sebastián Rueda, Universidad del Valle, Cali
    Electronics Engineer from Universidad del Valle (Cali, Colombia)
  • Beatriz Florián Gaviria, Universidad del Valle, Cali

    Systems and Computational Engineer (Universidad del Valle, Cali-Colombia), Master in Systems and Computation Engineer (Universidad de los Andes, Bogotá, Colombia), and PhD in Technologies of Information at the Universidad de Girona (Spain) 

     

  • Bladimir Bacca Cortés, Universidad del Valle, Cali
    Electronics Engineer with a Master degree in Automatics from the Universidad de Valle (Cali, Colombia) and Ph.D in Technology of the Universidad de Girona (Spain)

References

Arkin, R.C. (1998). Behavior-based robotics. Cambridge, MA: MIT Press.
Aseba (2013). Thymio II Robot [online]. Retrieved from: https://aseba.wikidot.com/en:thymio

Awabot (2016). Awabot education [online]. Retrieved from: http://www.pob-tech.com/

Awabot. (2013). Pob-Bot robot [online]. Retrieved from: http://education.awabot.com/

Barry, R. (2016). FreeRTOS - Market leading RTOS [online]. Retrieved from: http://www.freertos.org/

Benitti, F.B.V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978-988.

BirdBrain-Technologies. (2016). The finch robot [online]. Retrieved from: http://www.finchrobot.com/

Code.org. (2016). Anybody can learn [online]. Retrieved from: https://code.org/

De Cristoforis, P., Pedre, S., Nitsche, M., Fischer, T., Pessacg, F., & Di Pietro, C. (2013). A behavior-based approach for educational robotics
activities. IEEE transactions on education, 56(1), 61-66.

DJango-Software-Foundation. (2016). The Web framework for perfectionists with deadlines - DJango [online]. Retrieved from: https://www.djangoproject.com/

European Centre for the Development of Vocational Training [CEDEFOP]. (2010). Skills for green jobs: European synthesis report).Luxemburg: Publications Office or the European Union.

Giraldo, C., Florian, B., Bacca, B., Gómez, F., & Muñoz, F. (2012). A programming environment having three levels of complexity for mobile robotics. Ingeniería e Investigación, 32(3), 76-82.

Gómez, F., Muñoz, F., Florián, B.E., Giraldo, C.A., & Bacca-Cortés, E.B. (2008). Design and testing of a mobile robot with three levels of complexity for robotics experimentation. Ingeniería y Competitividad, 74(2), 53-74.

Jimenez, M, Caicedo, E., & Bacca-Cortes, E. (2010). Tool for experimenting with concepts of mobile robotics as applied to children's education. IEEE Transactions on Education, 53(1), 88-95.

K-Team (2016). Mobile robotics [online]. Retrieved from: http://www.k-team.com/

LEGO. (2016). Robolab on-line WEB site [online]. Retrieved from: http://www.robolabonline.com/home

Major, L., Kyriacou, T., & Brereton, O. P. (2012). Systematic literature review: teaching novices programming using robots. IET software, 6(6), 502-513.

Ministerio de Educación (2014). Plan estratégico de ingeniería 2012-2016. Buenos Aires, Argentina: Ministerio de Educación. Available at: http://pefi.siu.edu.ar/

Ministerio de Educación Nacional [MEN]. (2014). SPADIES. Bogotá, Colombia: MEN. Available at: http://www.mineducacion.gov.co/1621/w3-article-156292.html

MIT, MIT-Media-Lab & MIT-CSAIL. (2016). MIT App Inventor [online]. Retrieved from: http://appinventor.mit.edu/explore/about-us.html

MIT-Media-Lab, 2016. Scratch: Imagine, programming, share. Retrieved from: https://scratch.mit.edu

Ogata, K. (2009). Sistemas de control en tiempo discreto. México: Prentice Hall.

Parallax. (2014). Scribbler robot [online]. Retrieved from: http://www.parallax.com/product/28136

Shore, J. & Warden, S. (2008). The art of agile development. Sebastopol, CA: O’Reilly.

Smith, M. (2016, January 30). Computer Science for All. Retrieved from: https://www.whitehouse.gov/blog/2016/01/30/computer-science-all

Downloads

Published

2017-08-01

Issue

Section

Original Research