Robôs móveis programáveis como uma plataforma hands-on para programação básica

Autores

  • Sergio García Universidad del Valle, Cali
  • Sebastián Rueda Universidad del Valle, Cali
  • Beatriz Florián Gaviria Universidad del Valle, Cali
  • Bladimir Bacca Cortés Universidad del Valle, Cali

DOI:

https://doi.org/10.18046/syt.v15i41.2455

Palavras-chave:

Robôs móveis, ensino de engenharia, web-responsive

Resumo

As plataformas robóticas móveis são usadas em diferentes contextos de ensino. O estado da arte mostra que 197 artigos foram publicados nesta área de conhecimento em um período de dez anos.  A América Latina enfrenta um problema de baixa de inscrição de estudantes de engenharia. Na Colômbia, o programa SPADIES destaca como a falta de motivação e interação com artefatos reais relacionados com a teoria e prática é um aspecto importante na hora de abandonar os estudos. Este artigo descreve a implementação de uma plataforma composta de um conjunto de robôs móveis e de ferramentas software web-responsives para programação em diferentes níveis de conhecimento. Os robôs móveis foram implementados com sensores de proximidade, trajetória, iluminação, inércia e visão, sendo incluídas ferramentas como bluetooth e LEDs-ring e um suporte mecânico para um marcador apagável. As ferramentas web-responsives suportam a programação básica para novatos, enquanto Python e ANSI-C fazem o mesmo para alunos de níveis intermediário e avançado. 

Biografia do Autor

  • Sergio García, Universidad del Valle, Cali

    Electronics Engineer from Universidad del Valle (Cali, Colombia) 

     

  • Sebastián Rueda, Universidad del Valle, Cali
    Electronics Engineer from Universidad del Valle (Cali, Colombia)
  • Beatriz Florián Gaviria, Universidad del Valle, Cali

    Systems and Computational Engineer (Universidad del Valle, Cali-Colombia), Master in Systems and Computation Engineer (Universidad de los Andes, Bogotá, Colombia), and PhD in Technologies of Information at the Universidad de Girona (Spain) 

     

  • Bladimir Bacca Cortés, Universidad del Valle, Cali
    Electronics Engineer with a Master degree in Automatics from the Universidad de Valle (Cali, Colombia) and Ph.D in Technology of the Universidad de Girona (Spain)

Referências

Arkin, R.C. (1998). Behavior-based robotics. Cambridge, MA: MIT Press.
Aseba (2013). Thymio II Robot [online]. Retrieved from: https://aseba.wikidot.com/en:thymio

Awabot (2016). Awabot education [online]. Retrieved from: http://www.pob-tech.com/

Awabot. (2013). Pob-Bot robot [online]. Retrieved from: http://education.awabot.com/

Barry, R. (2016). FreeRTOS - Market leading RTOS [online]. Retrieved from: http://www.freertos.org/

Benitti, F.B.V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978-988.

BirdBrain-Technologies. (2016). The finch robot [online]. Retrieved from: http://www.finchrobot.com/

Code.org. (2016). Anybody can learn [online]. Retrieved from: https://code.org/

De Cristoforis, P., Pedre, S., Nitsche, M., Fischer, T., Pessacg, F., & Di Pietro, C. (2013). A behavior-based approach for educational robotics
activities. IEEE transactions on education, 56(1), 61-66.

DJango-Software-Foundation. (2016). The Web framework for perfectionists with deadlines - DJango [online]. Retrieved from: https://www.djangoproject.com/

European Centre for the Development of Vocational Training [CEDEFOP]. (2010). Skills for green jobs: European synthesis report).Luxemburg: Publications Office or the European Union.

Giraldo, C., Florian, B., Bacca, B., Gómez, F., & Muñoz, F. (2012). A programming environment having three levels of complexity for mobile robotics. Ingeniería e Investigación, 32(3), 76-82.

Gómez, F., Muñoz, F., Florián, B.E., Giraldo, C.A., & Bacca-Cortés, E.B. (2008). Design and testing of a mobile robot with three levels of complexity for robotics experimentation. Ingeniería y Competitividad, 74(2), 53-74.

Jimenez, M, Caicedo, E., & Bacca-Cortes, E. (2010). Tool for experimenting with concepts of mobile robotics as applied to children's education. IEEE Transactions on Education, 53(1), 88-95.

K-Team (2016). Mobile robotics [online]. Retrieved from: http://www.k-team.com/

LEGO. (2016). Robolab on-line WEB site [online]. Retrieved from: http://www.robolabonline.com/home

Major, L., Kyriacou, T., & Brereton, O. P. (2012). Systematic literature review: teaching novices programming using robots. IET software, 6(6), 502-513.

Ministerio de Educación (2014). Plan estratégico de ingeniería 2012-2016. Buenos Aires, Argentina: Ministerio de Educación. Available at: http://pefi.siu.edu.ar/

Ministerio de Educación Nacional [MEN]. (2014). SPADIES. Bogotá, Colombia: MEN. Available at: http://www.mineducacion.gov.co/1621/w3-article-156292.html

MIT, MIT-Media-Lab & MIT-CSAIL. (2016). MIT App Inventor [online]. Retrieved from: http://appinventor.mit.edu/explore/about-us.html

MIT-Media-Lab, 2016. Scratch: Imagine, programming, share. Retrieved from: https://scratch.mit.edu

Ogata, K. (2009). Sistemas de control en tiempo discreto. México: Prentice Hall.

Parallax. (2014). Scribbler robot [online]. Retrieved from: http://www.parallax.com/product/28136

Shore, J. & Warden, S. (2008). The art of agile development. Sebastopol, CA: O’Reilly.

Smith, M. (2016, January 30). Computer Science for All. Retrieved from: https://www.whitehouse.gov/blog/2016/01/30/computer-science-all

Downloads

Publicado

2017-08-01

Edição

Seção

Original Research